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1 Introduction

Both developed and developing countries display a variety of policies and dedicated agencies aimed

at helping firms establish a sustained presence in foreign markets. Underlying these policies is the

view that increasing the set of domestic firms capable of achieving sustained exports is key to foster

aggregate export growth and, potentially, economic development. Recent evidence by Eaton et al.

(2008), Freund and Pierola (2010), and Lederman et al. (2011) for Colombia, Peru, and Costa Rica,

respectively, supports this view by showing that a considerable fraction of aggregate exports in a given

year is accounted for by firms that were not exporting a few years earlier. However, while new entries

in foreign markets can potentially have a relevant long run impact, this potential is usually unrealized

as most export incursions do not become established export businesses. In fact, about two thirds of

firms that make an incursion in a specific foreign market do not continue to export to that market

in the subsequent year (Eaton et al. 2014; this paper). The reasons for such short spells are not yet

well understood. In particular, little is known about what determines export survival upon entry in a

foreign market.

Only recently has a growing literature started to uncover empirical regularities about the more

general dynamic process of firm exports, of which export survival is one of its salient manifestations.

The regularities tend to mimic analogous patterns long identified in the (domestic) firm dynamics

literature. For example, new exporters, like new firms, are smaller, tend to grow faster conditional on

survival, and are less likely to survive (Eaton et al. 2008, Arkolakis 2015), while the size distribution

of export sales, as the distribution of firm sales, resembles a Pareto distribution (Eaton et al. 2011).

Notwithstanding the similarities, two facts distinctly characterize the dynamics of firm exports. One

of these facts, emphasized in recent work, is that the survival rate of export incursions is strikingly low

in the first year after entry —particularly lower than the survival rates of domestic firms —and drops

further only modestly in subsequent years (e.g. Eaton et al. 2008, Ruhl and Willis 2014). The second

fact, which is novel, is that re-entrants in export markets are more likely to survive than first time

entrants to those markets. These two facts describe central features of exporter survival. As such,

they are also central to characterize, more generally, the dynamics of firm exports. The distinguishing

nature of these facts suggests that standard models of firm dynamics might not be appropriate to

explain exporter dynamics, which might be characterized by distinct ingredients. We show that these

facts also set tight constraints on the class of models that can explain them and thus are critical in

guiding the construction of a relevant theory of exporter dynamics.
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We build a theoretical model of exporter dynamics guided by these two facts. The estimated

model can explain these facts as well as other relevant facts that have been the focus of previous

work. The main feature of the model is the existence of uncertainty about foreign market profitability

that can only be resolved by actively exporting (Segura-Cayuela and Vilarrubia 2008, Freund and

Pierola 2010, Albornoz et al. 2012, Nguyen 2012, Eaton et al. 2014). As a result, firms experiment

under losses to resolve this uncertainty. The model is flexible yet it is parsimonious, and exhibits

a number of tractable features that we exploit to obtain analytical results on survival probabilities.

Those results help us estimate the model and derive predictions that we contrast with the data. In

order to establish the key role that uncertainty and experimentation play in the dynamics of exports,

we follow a two pronged approach. First, we show that other models often used in the literature

which do not include uncertainty and experimentation are unable to generate both facts as a joint

prediction. Second, we test the central mechanism of the model by exploiting hypothesized variation

in the degree of uncertainty by product and distance to the destination. The implied predictions of

uncertainty variation on survival probabilities are confirmed by the data in most cases.

We model a simple uncertainty and experimentation mechanism embedded in a theoretical frame-

work with otherwise standard elements. A firm’s operating profit in an export market is initially

determined by an idiosyncratic time-varying component that follows a Geometric Brownian Motion

(GBM) and a constant and idiosyncratic market-specific component. Operation in a foreign market

requires that firms pay a continuous, constant, and idiosyncratic fixed cost while firms are allowed to

enter and exit the market freely, particularly since there are no sunk costs.

The uncertainty and experimentation mechanism operates as follows. Before entering a foreign

market, firms are uncertain about their potential profitability. This uncertainty can only be resolved

by actively exporting. Artopoulos et al. (2013) argue that adapting products and marketing practices

to match foreign market tastes and ways of doing business is critical for long run export success.

Our model postulates that firms are uncertain about the extent to which they will be able to match

those foreign tastes and business practices. Hence, they are willing to experiment to find this out by

initially exporting at a loss. Specifically, the model includes a multiplicative shock to operating profits

with Poisson arrival rate, which increases profits in expected value. The firm knows the parameters

of the distribution where the shock comes from and the Poisson arrival rate but is uncertain about

the particular realization of both random processes. In other words, it is uncertain about how much

and how fast profits will jump. In this environment, the firm enters the foreign market even when

operating profits are lower than fixed costs in the expectation of eventually improving performance
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and justifying the initial investment. Once it has received the shock, however, the firm only stays

active if operating profits are higher than fixed costs as there is no further uncertainty to resolve. In

the empirical section, we parametrize this shock with a Pareto distribution with scale parameter 1.

A key analytical result is that the probability of survival upon entry at any given horizon is

independent of the firm-specific profitability shifters and fixed costs. Firms time their entry and exit

decisions as a function of these heterogeneous parameters precisely in a way that cancels out their

potential impact on survival probabilities once we condition on entry. Hence, those probabilities are

identical across firms and can be obtained without information on the firm-specific parameters or the

probability distribution that generates them as they only depend on common parameters. This is one

of the main advantages of focusing on survival upon entry. Since observed survival rates average the

realization of a common probability across firms, we can use them as empirical counterparts of those

theoretical predictions to estimate the common parameters of the model. Although these are only a

small subset of all the parameters, they alone determine some of the most important features of the

dynamics of firm exports. These features include not only those related to export survival but also

those related to export growth.

The fact that the survival rate of export incursions is strikingly low cannot be easily accounted for

by standard models. This notion is illustrated by a special case of our model where we shut down the

uncertainty and experimentation mechanism. In order to fit the survival rate in the first year, this

special case needs to set such a negative trend on the GBM process (relative to its volatility) that it

severely underpredicts survival rates at later horizons. In contrast, uncertainty and experimentation

arise as a natural explanation for the observed survival patterns. The low initial survival rate of

export incursions is an expected outcome of the experimentation process. In turn, deaths can occur

disproportionately during the first year as long as the resolution of uncertainty occurs suffi ciently fast.

This uncertainty and experimentation mechanism also explains why re-entrants exhibit higher survival

rates than entrants. Since a large fraction of re-entrants have already resolved their uncertainty during

their initial export spell, their re-entry decision is not driven by an intention to experiment. Thus,

they are more conservative to enter and as a result survive more.

We estimate the model using firm-level customs data of exports from Peru for the period 1993-

2009. We calculate survival rates one to five years after entry both for entrants and for re-entrants.

These ten moments are used to estimate the parameters of the model with the Simulated Method

of Moments (SMM). Before performing the estimation we develop a correction in the theoretical

survival probabilities that accounts for the mismatch between a model set in continuous time and
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data recorded over discrete time periods. One correction is the “partial-year” effect emphasized by

Berthou and Vicard (2013) and Bernard et al. (2014), which deals with the fact that firms may enter

the export market at different points along the year. The second correction is the “re-entry” effect,

which deals with the possibility that a firm may be out of the export market at the time of computing

the instantaneous probability but re-enter it during the relevant discrete (calendar) year. Although

the latter effect has been neglected so far both in the firm dynamics and in the exporter dynamics

literatures, it is the one with the largest impact on predicted survival probabilities.

The estimated model predicts quite closely the survival rates of export incursions. The predictions

are slightly below the survival rates in the data by an average of three percentage points over the first

five horizons. The parameter estimates also indicate that uncertainty is resolved notably fast. A firm

that continuously exports has a 56.5% probability of receiving the multiplicative shock in less than

a month. The shock also has a considerable dispersion (0.54), which justifies the willingness of firms

to experiment in foreign markets in the hope of benefiting from a good realization of this random

variable. The estimated model also predicts the qualitative fact that survival rates are higher for

re-entrants than for entrants. However, it overpredicts the gap. While in the data the average survival

rate of re-entrants over the first five horizons is 0.12 percentage points higher than for entrants, the

model predicts a 0.19 percentage point difference between the two average rates.

We use hypothesized variation in uncertainty across products and markets to test our uncertainty

and experimentation mechanism. Specifically, the model predicts that survival probabilities should be

lower the higher is the variance of the shock, which is a measure of the degree of uncertainty that can be

resolved by exporting. First, we postulate that the degree of uncertainty should be higher in the case

of differentiated products, where firms need to adapt to idiosyncratic tastes and find distributors that

help propel sales (Artopoulos et al. 2013). Consistent with the predictions of the model, survival rates

are lower for entrants in differentiated products than for entrants in homogenous products. Second,

since a fraction of re-entrants have resolved their uncertainty, this prediction should hold attenuated in

the case of re-entrants. We find that the gap between survival rates of re-entrants of differentiated and

homogenous products is indeed lower but not as much lower as predicted. Third, we postulate that in

the case of differentiated products, the degree of uncertainty over export market profitability should

increase with the distance to the destination. Consistent with the model predictions, we find that

survival rates in differentiated products are lower the farther away is the destination market. Finally,

though this prediction should also be attenuated in the case of re-entrants, we find that survival rates

decrease with distance as much for re-entrants as for entrants. Examined together, the evidence of
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this section is consistent with the main predictions of the uncertainty and experimentation mechanism

of our model though not with all of its subtler implications. As a whole, we find it strongly supportive

of the notion that uncertainty and experimentation are central components in the dynamics of firm

exports.

Our choice of a GBM to model the evolution of the profitability process is made primarily for

analytical simplicity. This choice is nevertheless not unjustified since the evolution of export sales

has been found to be a highly persistent process (Roberts and Tybout 1997, Das et al. 2007). In

any event, we also consider a broader class of models and show that, in the absence of uncertainty

and experimentation, they are unable to match the two distinguishing facts that we highlight. In

particular, as in Arkolakis (2015) we postulate a more general model that embeds as special cases

a GBM and a Geometric Ornstein-Uhlenbeck process expanded with a trend in its long-run value.

While there exist parameter configurations in this encompassing model that can explain the survival

rates of export incursions at various horizons, they are unable to account for the higher survival rates

of export re-entrants. First, to fit the decreasing decay in survival rates it is necessary that the process

has a negative long-run trend. Second, since re-entrants tend to be older firms, they reach the re-entry

point (when they do) farther away from the long run value and thus mean-revert more strongly. As a

result, they survive less, not more, than entrants.

This paper is connected to several strands of literature. The oldest and most influential literature

on exporter dynamics has focused on the hysteresis implications of exporting sunk costs (Baldwin and

Krugman 1989, Dixit 1989, Alessandria and Choi 2007, Impullitti et al. 2013). In this paper, we

show that despite their starring role in the literature, sunk costs do not appear to be necessary to

deliver predictions on export survival that can fit the data. On the contrary, they only exacerbate

the predictive shortcomings of models that do not include uncertainty and experimentation. A more

recent literature develops methods to structurally estimate sunk costs (Das et al. 2007, Morales et

al. 2014). Our results suggest that such methods may yield sunk-cost estimates that are largely

determined by assumptions about the relationship between domestic and foreign profitability. We

generate predictions that do not require making assumptions on this relationship.

Except for our inclusion of uncertainty and experimentation, this paper follows closely the work

of Arkolakis (2015). In particular, we also model a GBM process and allow for free exit and re-entry

in foreign markets. However, we do not include market penetration costs (Arkolakis 2010), which are

critical in that work and in Eaton et al. (2011) to generate the observed size distribution of exporters.

We show that, in the absence of sunk costs, market penetration costs do not change the survival
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predictions of standard models and hence their shortcomings in matching the facts that we document.

Furthermore, our uncertainty and experimentation mechanism could be an alternative explanation for

the observed deviations from Pareto in the lower tail of the exporter distribution since it reduces the

size of new, usually small, exporters.

The essence of our uncertainty and experimentation mechanism has already been postulated in

various forms in previous studies of exporter dynamics (Segura-Cayuela and Vilarrubia 2008, Freund

and Pierola 2010, Albornoz et al. 2012, Nguyen 2012). We build on this literature by embedding this

mechanism in a more general framework that can deliver a wider set of quantitative and qualitative

predictions. In this goal, this paper complements Eaton et al. (2014) by sacrificing a relevant dimension

in newer foreign transaction databases —relationships with distributors on the importer side —in the

sake of parsimony and tractability. Finally, one additional contribution to this literature is that we test

for the relevance of uncertainty and experimentation in exporter dynamics and show the limitations

of models do not account for these features.

This paper is also related to work specifically oriented to explain exporter survival (Bekes and

Murakozy 2012; Albornoz et al, 2014). While our model and theoretical results emphasize exporter

survival, we hope to make a contribution to a broader literature on exporter dynamics. In the last

section of the paper (yet unwritten), we will discuss how this model can also explain most of the

relevant facts on the dynamics of firm exports that the literature has highlighted and that motivated

work on alternate models.

The rest of the paper is organized as follows. Section 2 describes the two distinguishing facts

about exporter survival that we emphasize in this paper. Section 3 sets up the model and derives

predictions on survival probabilities. Section 4 estimates the model, compares its predictions with the

data, and discusses why existing models in the literature cannot explain the two facts. Section 5 tests

for the uncertainty and experimentation mechanism of the model by looking at its implications across

products and markets. Section 6 provides concluding remarks.

2 Two central facts about exporter survival

A vast amount of literature has established a number of facts about patterns of firm dynamics related

to their survival (e.g. Mansfield 1962, Evans 1987, Dunne et al. 1988, 1989), growth rates (e.g. Hart

and Prais 1956, Mansfield 1962, Evans 1987, Hall 1987, Dunne et al. 1989, Davis and Haltiwanger

1992), and size distribution (Simon and Bonini 1958, Cabral and Mata 2003, Luttmer 2007). A more
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incipient strand of literature has recently uncovered analogous patterns in the dynamics of firm exports.

For example, smaller and younger exporters, like smaller and younger domestic firms, are less likely

to survive and display higher growth rates conditional on survival (Eaton et al. 2008, Berthou and

Vicard 2013, Arkolakis 2015). Also, the upper tail of the size distribution of export sales resembles

a Pareto (Eaton, Kortum, and Kramarz 2011, Arkolakis 2015). In spite of the notable similarities,

two facts uniquely distinguish exporter dynamics. The first is that the survival profile (i.e. the line

connecting survival rates at different horizons) of export entrants is low and flat. The second is that

the survival profile of export re-entrants is higher than the survival profile of entrants. This section

describes these two facts and discusses how they guide our search for a parsimonious model of exporter

dynamics that can explain them.

First, we briefly discuss some definitions and basic data issues. We employ firm-level customs data

from Peru for the period 1993-2009 graciously provided to us by the Trade and Integration Unit of the

World Bank Research Department.1 Our dataset covers all export transactions from Peru between

1993 and 2009 by firm, destination country (i.e. export market), and year. We define an export

“incursion”as the first entry of a firm in an export market. The “survival rate”ST is the proportion

of incursions that are active in the corresponding export market T years after entry. We follow an

incursion up to five years. Hence, the “survival profile”includes the set of survival rates {ST }T=1,..,5.

Since we do not observe data before 1993, we only consider incursions starting in 1997 to minimize

the chances of falsely identifying as incursions export instances with an antecedent before 1993.2 Also,

since we track survival up to five years after entry, we restrict the sample to incursions starting no

later than 2004. Our definition of survival does not impose consecutive activity as an exporter up to

T . Thus, an incursion that exited at T = 2 but is active at T = 3 after re-entering the market is

considered a survivor in the latter horizon.

If the firm does not maintain a continuous presence in the market during all consecutive years after

the incursion, subsequent entries are defined as “re-incursions”or “re-entries”. We define an export

re-entry as the start of a new spell of exports to a destination by a firm that has exported to that

1The dataset was collected by this unit as part of their efforts to build the Exporter Dynamics Database. Details of

its construction are described in the Annex of Cebeci et al. (2012)
2For example, incursions in 1997 would be false if the firm exported in the past but not in the last four years. Using

the latest years in our database, we find the proportion of incursions that have exported in the past but not in the last

four years to be 8.4%. As we consider incursions in later years, false incursions will arise only after a longer period

of inactivity. For example, the proportion of false incursions is 3%(1%) when we firms are inactive for 7(10) years.

Averaging across incursions in all years, we estimate the proportion of false incursions to be 3.3%.
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destination in the past but has not done so in the previous year. Re-incursions may also be instances

of survival for the original incursion. In the example above, the survival status of the firm at T = 4

and T = 5 is taken into account both for the final years of the survival profile of entrants and for the

first two years of the survival profile of re-entrants.

Fact 1: The exporter survival profile is low and flat

Figure 1 shows the survival profile of export incursions in our dataset (dark solid line). A striking

feature of this profile is the low survival rates it displays. Only 35.8% of Peruvian export incursions are

still active one year after entry. Five years after entry, the survival rate is 17.7%. Low survival rates

are not specific to Peru. Using data from the Exporter Dynamic Database, Cebeci et al. (2012) report

that the average and median one-year survival rates across 38 countries are both 43%.3 Another salient

feature of the survival profile is the flat slope after T = 1. In contrast to the vast fraction of firms

that exits just after entering the export market, further increases in the fraction of non-survivors at

longer horizons are considerably more gradual. As a reference, figure 1 displays the domestic survival

profile, which is the survival profile of firms as production units (dark dotted line). We denote it

“domestic” since all producing firms, except for a negligible fraction of them, sell in the domestic

market.4 Compared to exporter survival rates, domestic survival rates are substantially higher. The

first year after entry, 77.9% of U.S. firms in an entry cohort are still in operation. Five years after

entry, the survival rate is 49.1%.5

The features of the exporter survival profile depicted in figure 1 are not driven by composition.

To control for other covariates, we can obtain the survival profile from a regression framework. First,

we regress the survival status of incursions in each of the first five horizons on horizon dummies. This

exercise is equivalent to simply calculating the survival rate per horizon as we did in the figure. The

results of this regression are displayed in column 1 of table A.1. Then, we add a set of fixed effects by

product (2-digit Harmonized System), destination country, and year (i.e. the year corresponding to

3Splitting the sample into developed and developing countries, the average survival rate is 43% for each of the two

groups. For Peru, they find a survival rate of 44%. Their reported rates are higher because they are calculated by

previously merging all destinations into one aggregate export market.
4Domestic survival rates are computed using the number of firms by entry cohorts reported in the Business Dynamics

Statistics (BDS) constructed by the Bureau of the Census. For comparison with export survival rates, we only consider

tradable-firm producers (agriculture, mining, and manufacturing) in entry cohorts 1997-2004. The survival profile is

almost unaffected if we include only manufacturing firms or firms in all remaining sectors.
5Domestic and exporter survival rates are not strictly comparable. While domestic survival rates capture persistence

as an employer, exporter survival rates capture persistence as a seller in a specific market.
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the survival status). We can see in column 2 that adding these flexible controls in all three dimensions

has a negligible impact on the estimated survival rates.

The fact that exporter survival rates are notoriously low has already been emphasized in the

literature.6 Freund and Pierola (2010), Albornoz et al. (2012), Nguyen (2012), and Eaton et al. (2014)

provide a plausible explanation for this fact. If export profitability has an uncertain component that

can only be resolved by being actively exporting, firms have incentives to export as an experiment

to resolve their uncertainty. Thus, export entry is consistent with low survival rates since firms are

betting on a relatively unlikely outcome. This is also the core mechanism operating in our model. As

long as firms resolve their uncertainty suffi ciently fast, this mechanism can explain both features of

the exporter survival profile. It is low at early horizons because firms soon find that exporting is not

a profitable activity. It is flat because firms that resolve their uncertainty favorably are less likely to

exit afterwards.

As an additional reference, figure 1 also displays the best prediction of a special case of our model —

the benchmark model —where this source of uncertainty is removed (light dotted line).7 As we can see

in the figure, the benchmark model is unable to predict the exporter survival profile observed in the

data as it predicts too high survival rates early upon entry together with too low survival rates at longer

horizons. Despite the specificity of this special case, its inability to fit the exporter survival profile

captures a broader implication of standard firm and exporter dynamics models whenever profitability

follows a persistent process. These models have diffi culty explaining low survival rates at early horizons

without also predicting a steep survival profile.

Fact 1 has been key to motivate recent work on uncertainty and experimentation in models of

exporter dynamics. Nevertheless, it is the novel fact we present next that, combined with fact 1,

makes a substantially stronger case for the relevance of such models.

Fact 2: The survival profile is higher for re-entrants than for (first-time) entrants

It is frequent that firms temporarily cease to export only to re-enter the same market later on. In

our dataset, the total instances of re-entry represent 26.4% of total incursions. Figure 2 compares the

survival profile of re-entrants with the profile for (first-time) entrants displayed in figure 1. Re-entrants

have uniformly higher survival rates. Most of the difference already takes place in the first year after

entry, when the survival rate is 46.0% for re-entrants versus 35.8% for entrants. Over longer horizons,
6See, among others, Ruhl and Willis (2008), Eaton et al. (2008), Volpe Martincus and Carballo (2009), and Nguyen

(2012).
7Section 5 discusses the estimation of the benchmark model.
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this gap is preserved with only slight changes. Like fact 1, also fact 2 is not driven by composition.

Columns 3 and 4 of Table A.1 display analogous results including re-incursions.8 In column 3, we

simply include horizon dummies for re-entrants, which delivers the survival rates depicted in figure 2.

In column 4, we include a full set of dummies by product, destination, and year. Again, we find that

these controls for composition do not substantially affect the survival profiles depicted in the figure.9

Fact 2 has no corresponding analog in the firm dynamics literature. As a matter of fact, we are

not aware of any study that has computed re-entrant domestic survival rates. A likely reason is that

instances of domestic re-entry are much more infrequent than in the case of exports and are typically

either dismissed as nuisance or tinkered with assuming they are due to measurement error.10

An appealing explanation for the higher survival rates of re-entrants arises naturally from the

experimentation mechanism described above. Firms that exit and re-enter have already resolved their

uncertainty and hence do not enter to experiment. As their (re-)entry decisions are made with more

accurate information about their potential profitability, they tend to survive longer. This is indeed

how our model explains fact 2. Furthermore, in section 4.5 we show that a broad class of models

of exporter dynamics is unable to explain facts 1 and 2 jointly in the absence of uncertainty and

experimentation.

3 The model

3.1 Set up

Firms go through two stages in their lifetime as exporters in a given market. At first, they are

inexperienced and earn flow profits

πi (θt) =

 κθt − F if export at t

0 otherwise


8Standard errors are computed by clustering by firm-destination. This allows for arbitrary correlation between the

survival status of incursions and re-incursions of a firm in a given market at any horizon.
9We note that since the horizon dummies sum up to a constant, like the different sets of fixed effects, there is a degree

of freedom to set the level of the survival profile at any arbitrary level by choosing an appropriate normalization of the

fixed effects. To ease readability, we choose normalizations that leave the coeffi cient on the horizon dummies at similar

levels as the observed survival rates. In any event, those normalizations do not affect the decay of the survival profile.
10Due to how “entry”is defined in standard firm dynamic databases (Baldwin et at. 2002), recorded re-entry instances

might be spurious. For example, the BDS reports that re-entry instances represent 7% of incursions. However, since the

database only includes firms with at least one employee in its payroll, a large fraction of this percentage probably comes

from transitions in and out of employer status (Jarmin and Miranda, 2002).
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(subindex i is for inexperienced) where θt is a time-varying index of profitability, κ is a profitability

shifter and F is a fixed cost. We allow firms to be heterogeneous in κ and F , as well as in their

particular trajectory {θt}. However, we assume all firms have the same law of motion for θt, which

for analytical tractability we assume to be a geometric brownian motion (GBM),11

d log θt = µdt+ σdZt. (1)

In other words, we assume that µ, σ, and the initial level of the process θ̄ are common across firms.

We assume that the firm’s discount factor satisfies r > µ + 1
2σ

2 so that expected profits are finite.

Furthermore, to guarantee the existence of a stationary distribution, we follow Arkolakis (2015) and

assume that the mass of firms that are born each instant grows at rate gB > 0.12

Since all firms are born with θ̄, κ is an index of initial profitability in the market. For example, a

high value of κ may capture a prior understanding of demand characteristics in the export market that

allows the firm to make product adaptations that match their idiosyncratic characteristics (Artopoulos

et al. 2013). This parameter may also capture an advantage in communicating or conducting trans-

actions with foreign agents at lower variable trade costs, e.g. due to family ties. The fixed expenses

F represent the costs incurred in activities such as sustaining a distribution network and conducting

marketing efforts in the foreign market, which are paid on a continual basis while exporting.

For inexperienced firms, exporting yields additional benefits beyond receiving flow profits. Inex-

perienced firms know that their current profitability level in the export market is only transient and

they will eventually become experienced if they keep exporting. More specifically, while exporting,

inexperienced firms become experienced with intensity λ.13 An experienced firm earns flow profits

πe (θt;ψ) =

 ψκθt − F if export at t

0 otherwise


where ψ is the new profitability component that separates an experienced firm from an inexperienced

firm.14 The new component ψ intends to capture the fact that by engaging in the exporting activity
11The profitability parameter θt can be microfounded as the combination of random processes for demand and pro-

ductivity jointly determined by a multivariate GBM in a stationary competition environment with CES preferences. See

Luttmer (2007).
12We could also assume an exogenous death rate δ > 0. The only difference is that this parameter would directly affect

the prediction of the probability of survival of first-time entrants while gB does not.
13One could expect λ to increase with the length of the exporting experience or the sales volume. This, however, would

imply a substantial loss of tractability.
14Alternatively, we could have modelled ψ affecting fixed costs rather than operating profits. This decision is inconse-

quential for the purpose of explaining facts related to exporter survival.
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the firm might acquire fine-grained knowledge about the tastes and needs of consumers or reconfigure

its distribution network by finding more suitable partners (Eaton et al. 2012).

A key feature of our model is that ψ is unknown ex-ante by inexperienced firms. Those firms

only know the distribution of ψ, which we assume is common across firms and satisfies E (ψ) ≥ 1,

implying that being experienced is desirable in expectation. The possible sources of uncertainty are

various. One of them stems from the need to adapt products to satisfy demand idiosyncrasies in

foreign markets (Artopoulos et al. 2013, Eaton et al. 2014). Firms may be uncertain about the extent

to which their product adaptations match those idiosyncrasies and experiment in the market to figure

this out. Another source of uncertainty stems from the need to match with distributors that will exert

effort to push their products in the destination market (Artopoulos et al. 2013, Eaton et al. 2014).

Firms may also be uncertain about their ability to find such distributors.

Note that we do not include entry sunk costs in the model, so firms may exit and re-enter markets

freely. While this is an assumption made for simplicity, we argue later that sunk costs are neither

necessary to obtain the qualitative predictions of the model nor do they help improve its quantitative

predictions.

Finally, note that we presented the setup for a generic market. In doing so, we implicitly assumed

that while the exogenous part of profitability may be correlated across markets (θt), its endogenous

part (ψ) is independent across markets.15 In other words, there are no complementarities in entry

decisions across markets. While we think exploring these complementarities is interesting, they are

outside the scope of this paper and are left for future research.

3.2 Entry and exit decisions

It will prove convenient to work with normalized profits defined as θ̃t ≡ κθt
F . By Ito’s Lemma, θ̃t is a

GBM with the same parameters as θt. Let yx ∈ {0, 1} be an indicator function that takes the value

of one if the firm exports when its status is x = i, e. The firm’s problem is to maximize its discounted

expected profits by choosing an exporting policy
{
ye

(
θ̃t

)
, yi

(
θ̃t

)}∞
t=0
. We will solve this problem in

two steps. Since x = e is an absorbing state, we first solve for the optimal policy of an experienced

firm
{
y∗e

(
θ̃t;ψ

)}
. Then, we solve for the optimal policy

{
y∗i

(
θ̃t

)}
of an inexperienced firm taking

into account that once it becomes experienced it will follow policy
{
y∗e

(
θ̃t;ψ

)}
.

15ψ is endogenous in the sense that the timing of its realization depends on the export behavior of the firm. We also

rule out cases in which fixed costs across markets have a common component that needs to be paid only once, as in

Albornoz et al. (2014).
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The experienced firm

An experienced firm receives profits given by πe (θt;ψ) = ψκθt−F = F
(
ψθ̃t − 1

)
if it exports and

0 otherwise. The value of an experienced firm (Ve) at t = 0 is the solution to the following problem:

Ve

(
θ̃0;ψ

)
= sup
{ye(θ̃t)}

E

(∫ ∞
0

e−rtF
(
ψθ̃t − 1

)
ye

(
θ̃t

)
dt

)

subject to (1) with θ̃0 given, where r is the discount rate.

Suppose a firm follows any constant policy ye ∈ {0, 1} during an interval of time [t, t+τ ]. Exploiting

the stationarity of the problem, we can write the problem recursively as

Ve

(
θ̃t;ψ

)
= max

ye∈{0,1}
E

(∫ τ

0
e−rsF

(
ψθ̃t+s − 1

)
yeds+ e−rτVe

(
θ̃t+τ ;ψ

))
.

Taking the limit τ → 0 and rearranging we obtain

rVe

(
θ̃;ψ

)
dt = max

ye∈{0,1}

{
F
(
ψθ̃ − 1

)
ye

}
dt+ E

(
dVe

(
θ̃;ψ

))
(2)

where due to the stationarity of the problem we drop subscript t. This equation says that the return

of the firm is the sum of the instantaneous profit flow plus the expected appreciation. Since future

profitability is independent from the firm’s actions and there are no exit or re-entry costs, the exporting

decision only depends on whether current profits are non-negative. Thus, the firm’s optimal policy is

simply y∗e
(
θ̃;ψ

)
= 1 if θ̃ ≥ 1

ψ and y
∗
e

(
θ̃;ψ

)
= 0 if θ̃ < 1

ψ .

The inexperienced firm

First, we make a technical assumption so that the inexperienced firms’problem is well-defined: we

assume that the distribution of ψ is such that Eψ
(
Ve

(
θ̃;ψ

))
satisfies a polynomial growth condition.16

Let t denote the (random) time at which a firm becomes experienced. Given that this event occurs

with intensity λ only if the firm exports, the probability density function (p.d.f) of t depends on the

export policy. At time t = 0, this density is given by λyi
(
θ̃t

)
e−

∫ t
0 λyi(θ̃s)ds, where the exponent term

captures the probability that the shock did not take place until t and λyi
(
θ̃t

)
is the instantaneous

arrival rate. Then, the inexperienced firm’s problem can be written as

Vi

(
θ̃0

)
= sup
{yi(θ̃t)}

(
E

∫ ∞
0

[∫ t

0
e−ruF

(
θ̃u − 1

)
yi

(
θ̃u

)
du+ e−rtE

(
Ve

(
θ̃t;ψ

))]
λyi

(
θ̃t

)
e−

∫ t
0 λyi(θ̃s)dsdt

)
(3)

16We say that f : [0,∞) → R satisfies a polynomial growth condition if there exist M > 0 and ν > 0 such that

|f (θ)| ≤M (1 + θν)
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subject to (1) with θ̃0 given. Fixing a time t at which the firm receives the shock, the term in square

brackets in (3) captures the expected discounted profits, which consist of the discounted stream of net

profit flows F
(
θ̃u − 1

)
du accumulated during export periods up to t and the discounted expected

value of being an experienced firm. Note that by exporting the firm may become experienced sooner,

which is always desirable because it implies a higher profit flow on average.

Manipulating (3), we can rewrite the inexperienced firm’s problem as17

Vi

(
θ̃0

)
= sup
{yi(θ̃t)}∞t=0

E

(∫ ∞
0

e−rt−λ
∫ t
0 yi(θ̃s)ds

{
F
(
θ̃t − 1

)
+ λEψVe

(
θ̃t

)}
yi

(
θ̃t

)
dt

)
(4)

subject to (1) and θ̃0 given. Consider a firm that follows any constant policy yi ∈ {0, 1} during an

interval of time [t, t+ τ ]. Exploiting the stationarity of problem (4) we can write it recursively as

Vi

(
θ̃t

)
= max

yi∈{0,1}
E

(∫ τ

0
e−(r+λyi)s

{
F
(
θ̃t+s − 1

)
+ λEψVe

(
θ̃t+s;ψ

)}
yids+ e−(r+λyi)τVi

(
θ̃t+τ

))
.

(5)

Taking the limit τ → 0 and rearranging, we obtain

rVi

(
θ̃
)
dt = max

yi∈{0,1}

{
F
(
θ̃ − 1

)
+ λ

(
EψVe

(
θ̃;ψ

)
− Vi

(
θ̃
))}

yidt+ E
(
dVi

(
θ̃;ψ

))
. (6)

The term in brackets in equation (6) clarifies the potential trade-off involved in the firm’s exporting

decision. On the one hand, by exporting there is a chance that the firm will become experienced.

Accordingly, the term λ
(
EψVe

(
θ̃;ψ

)
− Vi

(
θ̃
))

captures the benefits of experimentation, which are

always non-negative since profits are on average higher for an experienced firm. In fact, when θ̃
∗ ≥ 1

and experimentation is meaningful (ie. ψ is not identical to 1), these benefits are strictly positive.

Thus, inexperienced firms unambiguously prefer to export when θ̃
∗ ≥ 1. On the other hand, when

θ̃ < 1 the first term becomes negative, i.e. F
(
θ̃ − 1

)
< 0. Thus, when θ̃ < 1 the firm faces a trade-off:

by exporting it earns the possibility of becoming experienced at the cost of incurring a loss. The

following proposition shows that there exists a region
(
θ̃
∗
, 1
)
where firms choose to experiment.

Proposition 1. (a) There exists an optimal policy characterized by a threshold θ̃
∗ ∈ [0, 1] such that if

θ̃ < θ̃
∗
, the firm does not export while if θ̃ ≥ θ̃

∗
, the firm exports. This policy is the unique piecewise

continuous optimal policy.18 Furthermore, if the distribution of ψ is not degenerate at 1, then θ̃
∗
< 1.

(b) θ̃
∗
solves πi

(
θ̃
∗)

+ λ
(
EψVe

(
θ̃
∗
;ψ
)
− Vi

(
θ̃
∗))

= 0.

17Distribute the term λyi
(
θ̃t
)
e−λ

∫ t
0 yi(θ̃s)ds inside the parenthesis and note that∫∞

0

(∫ t
0
e−ru−λ

∫ t
0 yi(θ̃s)dsλyi

(
θ̃t
)
F
(
θ̃u − 1

)
yi
(
θ̃u
)
du
)
dt =

∫∞
0

(∫∞
s
e−ru−λ

∫ t
0 yi(θ̃s)dsλyi

(
θ̃t
)
dt
)
F
(
θ̃u − 1

)
yi
(
θ̃u
)
du =∫∞

0
e−ru−λ

∫ u
0 yi(θ̃s)dsF

(
θ̃u − 1

)
yi
(
θ̃u
)
du.

18As usual in this class of models, the claim is true up to a measure zero Lebesgue set.
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Proof. See Appendix 1.

Proposition 1 states that there exists a threshold θ̃
∗ ≤ 1 such that the firm exports iff θ̃ ≥ θ̃

∗
. In

fact, this result holds in a more general set up than assuming a GBM and a multiplicative shock. In

Appendix 1, we specify a set of suffi cient conditions such that the firm follows a threshold strategy.

The key condition, which is satisfied in our setup, is:

dλEψ (max {πe (θt;ψ) , 0})
dθt

>
d limdt→0

{
E
(
e−rdtπi (θt+dt)

)
− πi (θt)

}
dθt

.

This condition says that the expected flow benefits of becoming experienced should increase faster

than the costs of experimenting today rather than tomorrow (recall πi < 0 in the relevant region).19

Proposition 1 also states that optimality at θ̃
∗
requires that:

F
(
θ̃
∗ − 1

)
+ λ

(
EψVe

(
θ̃
∗
;ψ
)
− Vi

(
θ̃
∗))

= 0. (7)

Appendix 2 shows that (7) can be solved to obtain

θ̃
∗ − 1 + λ

(
2

J + J̃

) ∫∞θ∗
(
θ̃
∗

z

)β̃1
(Eψ (max (ψz − 1, 0))− (z − 1)) dzz

+
∫ θ̃∗

0

(
θ̃
∗

z

)β2
Eψ (max (ψz − 1, 0)) dzz

 = 0 (8)

where J =
√
µ2 + 2rσ2, J̃ =

√
µ2 + 2 (r + λ)σ2, β̃1 = −µ+J̃

σ2
> 1 and β2 = −µ−J

σ2
< 0.

The intuition for (8) is as follows. First, note that for any GBM we can write the solution as an

integral of the flow over states z multiplied by a “weight”for that state.20 The weight represents the

length of time the process spends in each state, taking into account the proper discounting. For states

with z > θ̃
∗
, the correct discount —which is reflected in β̃1 — is r + λ since the inexperienced firm

becomes experienced at rate λ. Since in that region the inexperienced firm exports, the integrand is

the difference between the (expected) flow profits of an experienced firm and that of an inexperienced

firm. Note β̃1 > 0 since larger z are less likely and therefore more heavily discounted. For states

z < θ̃
∗
, only some experienced firms export. Hence, we only have the (expected) flow profits of an

experienced firm. The proper discount, which is reflected in β2, is now r since an inexperienced firm

19This rules out cases in which there is a region for θ where experienced-firm profits are relatively high but

inexperienced-firm losses from exporting are strongly decreasing in θ, inducing firms to wait, and another region in

which inexperienced-firm losses from exporting are flat in θ and experienced-firm profits are low but high enough so that

firms want to export.

20The weight here is
(

2

J+J̃

)(
θ̃
∗

z

)β̃1 1
z
for θ̃ > θ̃

∗
and

(
2

J+J̃

)(
θ∗

z

)β2 1
z
for θ̃ < θ̃

∗
. This is a property of GBM processes

(see Stokey 2009).
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remains inexperienced in this region. Note that β2 < 0, reflecting that when z < θ̃
∗
lower states are

less likely and, thus, more heavily discounted.

Equation (8) shows that our uncertainty and experimentation model preserves a tractable property

of simpler continuous-time models as we only need to solve one equation in one unknown to characterize

the whole strategy of the firm.21 ,22 While this is special to the GBM framework, we can still allow an

arbitrary distribution for ψ, F and κ. Furthermore, note that F and κ do not appear in (8). Hence,

θ̃
∗
does not depend on these parameters. In other words, θ∗ is proportional to κ and 1

F . Intuitively,

the firm “undoes” the effect of κ and F by timing its entry decision: a low-κ firm will wait longer

until θ is large enough to perfectly offset the effect of κ. This property of the model is going to be

very important in the next section and in the empirical exercise.

Let us recap the alternative export trajectories a firm can exhibit. The firm is originally inexperi-

enced and stays away from the market as long as normalized profits are below θ̃
∗
. As soon as θ̃ crosses

this entry threshold it starts to export. The purpose of entering the market is initially to experiment,

albeit incurring losses, in the expectation of resolving the uncertainty with respect to their profitability

shifter ψ. Eventually, one of three events might occur: (a) θ̃ might decrease and cross θ̃
∗
from above,

in which case the firm will stop exporting; (b) θ̃ might increase above 1, in which case it will turn

losses into profits; (c) the firm might receive the ψ shock. In the last case, the firm will keep exporting

only if the shock has been suffi ciently large to generate a net profit flow (i.e. if ψ ≥ 1
θ̃
).

3.3 The probability of survival

Henceforth, we assume that all firms are born inactive in the export market, ie. κθF < θ̃
∗
. Normalizing

the entry time to t = 0, the firm enters the foreign market with θ̃0 = θ̃
∗
. Since θ̃t is a GBM,

ln θ̃T = ln θ̃
∗

+ µT + σZT

is a SBM where ZT is a standard normal random variable. Defining xT ≡ ln θ̃T−ln θ̃
∗

σ ,

xT =
µ

σ
T + ZT .

21By contrast, note that solving for the optimal strategy in discrete-time dynamic models requires the computationally-

intensive procedure of iterating on the Bellman equation.
22πi and πe being both linear in θ (or, equivalently, ψ being multiplicative) is not important for this result. In appendix

2 we show that with general profit functions πi (θ) and πe (θ;ψ) the problem can still be reduced to one equation in one

unknown, as long as the conditions in Proposition 1, specified in the appendix, hold.
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First, note that, while a firm is inexperienced, it is active iff

ln θ̃T > ln θ̃
∗ ⇔ xT > 0⇔ µ

σ
T + ZT > 0. (9)

Thus, the likelihood of this event depends only on µ
σ . Since an exporter becomes experienced at an

intensity governed by λ, the likelihood of being experienced at any point in time depends only on µ
σ

and λ.

Second, define ψ̃ ≡
(

ψ
ψm

) 1
σ
for some ψm > 0. ψ̃ will later be useful to compare different distribu-

tions of ψ that differ only in a scale parameter ψm. Note that, while a firm is experienced, it is active

iff

lnψ + ln θ̃T > 0⇔ ln ψ̃ +
ln(ψmθ̃

∗
)

σ
+ lnxT > 0⇔ ln ψ̃ +

ln(ψmθ̃
∗
)

σ
+
µ

σ
T + ZT > 0 (10)

Let Ψ̃ denote the set of parameters that characterize the distribution of ψ̃. Thus, the likelihood of

this event depends only on µ
σ ,

ln(ψmθ̃
∗
)

σ and Ψ̃.

Let y (t) be an indicator function that takes the value of 1 if the firm is an exporter at t. Putting

both parts together, we see that knowing Υ =
{
µ
σ , λ,

ln(ψmθ̃
∗
)

σ , Ψ̃
}
is suffi cient to determine the like-

lihood of any given trajectory of {y (t)}. Thus, the expectation of any function of those trajectories

also depends on Υ. The following proposition formally states this result:

Proposition 2. Take any function f : A → R with A ⊂ P ({y (t)}∞t=0). Then, E (f) depends solely

on Υ. In particular, the probability of survival of an entrant, at horizon T (pT ), depends only on Υ.

Proof. Since A is a set of subsets of export trajectories {y (t)}∞t=0, and the likelihood of each trajectory

{y (t)}∞t=0 only depends on Υ, the likelihood of an event a ∈ A only depends on Υ. Since f takes

different values depending only on which event a ∈ A occurs, it follows that E (f) depends only on Υ.

For example, in the case of the probability of survival, take f = y (T ) and apply the result.

As we will discuss later, proposition 2 shows that using only information on entrant survival allows

us to identify only a subset of the parameters of the model. Furthermore, the following corollary shows

that the probability of survival of incumbents also depends only on this combination of parameters,

Corollary 1. The probability of survival of incumbents depends only on Υ

Proof. Since incumbents are just a weighted sum of entrants of different ages and the probability of

survival for entrants of a given age falls within the scope of proposition 2, it immediately follows that

the probability of survival of incumbents is also a function of Υ.

Another consequence of proposition 2 is the following,
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Corollary 2. pT is independent of κ and F

Proof. By proposition 2, pT only depends on Υ. From equation (8) it follows that θ̃
∗
is independent

of κ and F . Thus, pT is also independent of κ and F .

Corollary 2 is a key result. It establishes that the probability of survival of an export incursion

is independent of κ and F and hence only depends on parameters that are common across firms.23

The main implication of this result is that all firms entering a given market have the same probability

of survival T periods after entry. The strength of this prediction is achieved despite a substantial

amount of heterogeneity in the model allowed for by heterogeneous profit shifters (κ) and fixed costs

(F ) across firms and markets. Heterogeneity in κ allows the model to affect the likelihood of any entry

sequence into foreign markets. This parameter, however, does not provide any information about the

probability of survival in the market once it has entered it.

Since entry profits are given by πo ∼ F (the common factor of proportionality is θ̃
∗
), heterogeneity

in F also implies heterogeneous sales at the time of entry. For example, if sales are a constant

proportion of profits, entry sales will also be proportional to fixed costs. Thus, the model has a degree

of freedom left to rationalize the shape of the size distribution of entrants —and potentially the size

distribution of incumbents —by adjusting accordingly the distribution of fixed costs. Most results in

this paper do not depend on specific assumptions about this distribution, which we do not need to

impose. The two implications of Corollary 2 highlight an advantage of focusing on entrant survival

since we can obtain sharp predictions on observables without sacrificing flexibility over firm-specific

parameters we have little information about.

Next, we will compute pT . Since the firm can only receive shock ψ while it exports, it will be useful

to define the occupation time s as the total length of time the stochastic process xt spends above 0

between t = 0 and t = T :

s =

∫ T

0
1xt≥0dt

where 1xt≥0 is an indicator function for the event {xt ≥ 0}. Given an occupation time s, the probability

of not receiving the shock between 0 and T is P (no jump |s ) = e−λs.

Denote by ωT (s, x) the joint density of an occupation time of s (between 0 and T ) and xT = x.

Then, we can express the joint probability of not receiving the shock until T and xT = x as

P (no jump, xT = x) =

∫ T

0
e−λsωT (s, x)ds

23An analogous result with respect to heterogeneous market-specific profitability shifters is obtained in Albornoz et al.

(2014) in a framework without experimentation and with homogenous fixed costs.
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while the analogous joint probability for the case in which the firm receives the shock is

P (jump, xT = x) =

∫ T

0
(1− e−λs)ωT (s, x)ds.

Conditional on xT , the probability of survival of an experienced firm at T is P
(

ln ψ̃ > −xT − ln(ψmθ̃
∗
)

σ

)
.

Now we have all the required elements to compute pT . Taking into account that the ψ shock and

the process xt are mutually independent, we can decompose this probability into two terms. If xT ≤ 0

then the firm will only survive if it has received the shock and the shock was suffi ciently large. If

xT ≥ 0 then two things may happen: (a) if the firm has received the shock, then survival depends on

the magnitude of the shock; (b) if the firm has not received the shock, then it will be exporting at T

since it finds it profitable (in expected terms) to keep waiting for the shock. Thus, pT can be written

as:

pT =


∫ 0
−∞

∫ T
s=0

(
1− e−λs

)
P
(

ln ψ̃ > −xT − ln(ψmθ̃
∗
)

σ

)
ωT (s, x) dsdx∫∞

0

∫ T
s=0

{(
1− e−λs

)
P
(

ln ψ̃ > −xT − ln(ψmθ̃
∗
)

σ

)
+ e−λs

}
ωT (s, x) dsdx.

(11)

Pechtl (1999) shows that ωT (s, x) has the following closed form solution:

ωT (s, x) =


exp

{
−(µσ )

2
T

2 + µ
σx

}
|x|
2π

∫ T
T−s

exp
{
− x2

2(T−t)

}
[t(T−t)]3/2

dt if x ≥ 0

exp

{
−(µσ )

2
T

2 + µ
σx

}
|x|
2π

∫ T
s

exp
{
− x2

2(T−t)

}
[t(T−t)]3/2

dt if x < 0.

Therefore, given a parametrization of the distribution of ψ (we do this in the next section) equation

(11) is easy to compute numerically.

The introduction of uncertainty and experimentation allows the model to explain fact 1. Given

µ and σ, a model with uncertainty about ψ can consistently predict lower survival rates over a finite

horizon than a “benchmark model”without experimentation (in which case P (ψ = 1) = 1) and hence

help explain the low survival profile exhibited by fact 1. This result is established in the following

proposition:

Proposition 3. Define pBT as the probability of survival at horizon T in the benchmark model. Then,

given (µ, σ, r), any distribution of ψ with unbounded support, and any interval
[
T , T

]
with T > 0 and

T̄ <∞, we can pick λ̄ such that for any λ > λ̄, pT < pBT for T ∈
[
T , T

]
.

Proof. See Appendix 3.

The intuition of this result is the following. Firms are willing to enter the foreign market with a low

value θ̃
∗
to experiment and resolve their uncertainty regarding ψ. Since there are no sunk costs, the
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only cost of this strategy is the accumulation of losses until the firm becomes experienced. Lured by

potential future profits, firms are willing to bet on this uncertain event even if only a good shock will

justify their permanence as exporters. Furthermore, for a suffi ciently high probability that the jump

occurs fast (a high λ) the firm will be willing to accept a very low survival probability in exchange

of the chance of getting a good ψ draw.24 This is the main insight of the proposition. In addition

to explaining a low export survival profile for any set of dynamic parameters (µ, σ), this mechanism

can also explain the flatness of the survival profile observed in the data. While in the short run the

uncertainty regarding ψ implies many firms die because of the shock, firms that do receive the ψ shock

are placed far away from the threshold. Hence, they take longer to exit than firms in the benchmark

model. In contrast, as we discuss in the next section, the benchmark model can only match a low

survival rate at a specific horizon by also predicting a steep survival profile.

The introduction of uncertainty can also help explain fact 2. This is established by a simple

corollary to proposition 2:

Corollary 3. Define pRT as the probability of survival over horizon T for a re-entrant to the market.

Then, given (µ, σ, r), any distribution of ψ with unbounded support, and any interval
[
T , T

]
with T > 0

and T̄ <∞, we can pick λ̄ such that for any λ > λ̄, pRT > pT for T ∈
[
T , T

]
.

Proof. There are two classes of re-entrants. Re-entrants that have not received the shock re-enter and

exit at the same thresholds as first-time entrants. Hence, they have their same probability of survival

(pT ). Re-entrants that have received the shock enter and exit at θ∗ = 1
ψ . Although this threshold is

different from the entry and exit thresholds of firms in the benchmark model, the fact that entry and

exit thresholds coincide in both cases implies that they have identical survival probabilities (pBT ).

Denoting by ρs > 0 the probability that a re-entrant has received the shock, the survival probability

for a re-entrant is pRT = (1− ρs)pT +ρspBT . Using proposition 3, this directly implies that pRT > pT .

This result is driven by the fact that a fraction of re-entrants already knows ψ and hence is only

willing to re-enter when they can make positive profits. As a result, they enter with a higher value

of θt and thus are more likely to survive. The role of uncertainty to explain fact 2 is much more

transparent here since in this case the predictive failure of the benchmark model is qualitative. In the

absence of uncertainty, entrants and re-entrants are predicted to have the same probability of survival.

24The role of the unbounded support for the distribution of ψ is to make the threshold θ̃
∗
arbitrarily small when

λ→∞. This is a suffi cient condition to make the entrant probability of survival arbitrarily small in that limiting case.
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While the firm is uncertain about the value of ψ, it also knows that E(ψ) ≥ 1. However, the results

of proposition 3 and corollary 3 are driven by the fact that ψ is ex-ante unknown. To see why, consider

a family of distributions Ψ that satisfy ψ = ψmψ̃, i.e. they are identical up to a scale parameter ψm.

Hence, E(ψ) ≥ 1 can be decomposed into ψm ≥ 1 and E(ψ̃) = 1. The following proposition states that

the probability of survival goes up with ψm. Thus, the fact that E(ψ) ≥ 1 could not alone generate

Proposition 3 and Corollary 3 if the distribution of ψ̃ were degenerate.

Proposition 4. Let ψ = ψmψ̃. Then, the probability of survival at any horizon increases with ψm.

Proof. See Appendix 4.

Proposition 2 establishes that survival only depends on ψmθ̃
∗
. In fact, it follows immediately

from (10) that the probability of survival increases with this product. The key step in the result is

proving that ψmθ̃
∗
increases with ψm (note that θ̃

∗
is a decreasing function of ψm). Recall that θ̃

∗

is independent of κ, i.e. if κ increases then θ∗ decreases exactly such that κθ∗ stays constant. An

increase in ψ, realization by realization, is similar to an increase in κ except during the experimentation

period. Thus, the firm does not fully offset the larger ψ with a smaller θ̃
∗
. If the distribution of ψ

were degenerate (i.e. deterministic), then E(ψ) ≥ 1 would imply that ψm > 1. Thus, in this case

the previous result implies that firms in the full model would survive at least as much as firms in

the benchmark model, which would contradict fact 2. It would also imply that in an uncertain world

making the shock more attractive realization by realization (ie. more learning by exporting) would

worsen the ability of the model to explain the data.

4 Estimation

In this section, we estimate the model parametrizing the shock with a Pareto distribution. We describe

the data and the estimation strategy, and we discuss the ability of the model to predict facts 1 and 2.

This section also discusses the extent to which alternate models often used in the literature that do

not account for uncertainty and experimentation can explain these two facts.

4.1 Descriptive Statistics

Table 1 provides descriptive statistics about exporters and incursions in our dataset (left panel) and

about the macroeconomic environment in Peru (right panel) during the sample period. The first

column details the number of exporters each year. The second column details the number of instances,
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which are any active firm-market-year combination. The third and fourth columns display the number

of incursions and re-entries, respectively. Note that an exporting firm might not have made an incursion

during the sample period. In total, during the sample period (1997-2004) we identify 34, 830 incursions

by 13, 664 unique firms and 9205 re-incursions by 3090 unique firms. The first four columns in the

left panel display evidence of growing exporting activity in Peru during the sample period. The last

column shows the survival rate for each cohort of incursions in a two-year horizon. The survival rate

hovers around an average of 26.6%.

The right panel of the table displays summary indicators of the macroeconomic performance of

Peru. The information is provided for an expanded period that includes both the sample years used to

identify incursions (1997-2004) and the years used to compute survival (2005-2009). The first column

of this panel shows a strong positive trend for aggregate exports in Peru. Similarly, the second column

shows a strong positive trend in the evolution of GDP, particularly in the later years of the sample.

The last column displays the evolution of the real exchange rate, which exhibits an accumulated

depreciation of 29% during the period 1996-2002 followed by an accumulated appreciation of 16%

during the period 2002-2009. While our model does not account for changes over time in potential

export profitability due to changes in the real exchange rate, by focusing on averages over a time period

that includes both appreciation and depreciation of the domestic currency we hope to capture patterns

in the data that approximate those that would arise in a fully stable macroeconomic environment.

4.2 Survival probabilities under time aggregation

Our model is set in continuous time and hence assumes that firms make export decisions at every

instant in time. The data, however, record transactions over discrete time periods. This mismatch

introduces a time aggregation problem. We describe here how we correct for it.

For expositional transparency, let us focus on the “benchmark model”(i.e. the special case without

uncertainty where either α → ∞ or λ → 0). In the benchmark model, the decision to export does

not bear dynamic consequences. Hence, the firm exports whenever it makes positive profits (θ̃
∗

= 1).

For the normalized process xt, this implies that entry an exit thresholds coincide at xt = 0. Given

these thresholds and the fact that xt follows a SBM with drift µ̃ = µ
σ and diffusion parameter 1, the

probability of survival at instant T after entry is simply given by:

pBT = Φ
(
µ̃
√
T
)
. (12)

This probability depends only on µ̃, not on the individual values of µ and σ.
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Equation (12) predicts an “instantaneous”probability, i.e. the probability that a firm entering at

t = 0 is still active at t = T . For example, for a firm that entered on January 1st of calendar year 0

this formula provides the probability that it exports on January 1st of calendar year T . However, this

is not how we observe the data. First, calendar year T will report positive exports even if the firm

was not exporting at t = T (January 1st) as long as it re-entered anytime between that instant and

t = T + 1. We call this the “re-entry effect”. Second, the firm could have first entered the market

at any instant t ∈ [0, 1) (e.g. August 14th) rather than at t = 0 (January 1st). In that case, the

relevant horizon to compute survival in calendar year T is shorter. This is the “partial year effect”

emphasized by Berthou and Vicard (2013) and Bernard et al. (2014). Thus, time aggregation requires

two adjustments to make pBT a proper theoretical counterpart of survival rates as we observe them

in the data.

Denote by PBT (τ) the probability of survival adjusted for the re-entry effect for an incursion made

at τ ∈ [0, 1). Assuming a uniform density for the time of entry throughout the year, we can account

for the partial year effect by computing PBT =
1∫
0

PBT (τ)dτ .25 In turn, PBT (τ) consists of two parts.

The first is the instantaneous component. It captures the probability that a firm that entered the

market at t = τ is actively exporting in the instant t = T . This event will happen if xT ≥ 0. The

second part is the re-entry component. It captures the probability that the firm is not exporting at

t = T but does it at some point during calendar year T . This event will occur if xT < 0 but xt ≥ 0

for some t ∈ [T, T + 1). Denote by a the first instant in time, starting from t = T , that xt ≥ 0. This is

known as the “first passage time”(FPT) and can be defined as a = inf {t : t ≥ T s.t. xt ≥ 0}. Then,

the two parts of PBT (τ) can be written as:

PBT (τ) = P (a = T ) + P (T < a ≤ T + 1). (13)

Computing the instantaneous part just requires modifying the formula in equation (12) to account

for the fact that the relevant time horizon is T − τ rather than T . Thus, P (a = T ) = Φ
(
µ̃
√
T − τ

)
.

Computing the re-entry part requires that we appeal to known formulas for the FPT of a SBM. We

omit the resulting formula but note that it can be derived as a mathematical expression that can be

solved up to integrals that need to be numerically computed. Suffi ce it to say here that the re-entry

component is also only a function of µ̃ = µ
σ . Thus, so are PBT (τ) and PBT .

Adjusting for the re-entry effect and the partial-year effect has a considerable impact on survival

probabilities. To assess the quantitative importance of these two adjustments, in table 2 we report,
25Using Peruvian export data at a monthly frequency, Bernard et al. (2014) show that actual export entry throughout

the year is close to uniform.
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for values of µ̃ ranging from −0.1 to −0.9: (a) the instantaneous probability of survival without

adjustment (i.e. calculated according to (12)); (b) the instantaneous probability of survival adjusted

for the partial year effect assuming uniform entry; (c) the probability of survival adjusted only for the

re-entry effect; and (d) the probability of survival adjusted for both the partial year effect and the

re-entry effect. Panel A reports these probabilities at horizon T = 1 while panel B reports them at

horizon T = 5. As we can see in the table, the combined impact of the two effects is substantial. For

example, in the case of µ̃ = −0.5, accounting for both effects more than doubles the survival prediction

when T = 1 while it increases it by 68% when T = 5. The table also shows that the re-entry effect is

more important than the partial-year effect. In the case of µ̃ = −0.5, the re-entry effect alone accounts

for 60% of the total adjustment when T = 1 while it accounts for 77% when T = 5.

While the exposition in this section focused on the predictions for survival of the benchmark

model, analogous adjustment for re-entry and partial-year effects can be made on the predictions for

survival of the full model derived in section 3.3. Although they can also be derived as mathematical

expressions that can be solved up to integrals that need to be numerally computed, the estimation of

the full model, described next, simulates those adjusted probabilities.

4.3 Estimation strategy

Proposition 2 states that survival probabilities only identify particular combinations of the model’s

parameters, Υ =
{

ln(ψmθ̃
∗
)

σ , µσ , Ψ̃, λ
}
. For parsimony, we specify ψ to follow a Pareto distribution with

location parameter ψm and scale parameter α. This, in turn, implies that ψ̃ =
(

ψ
ψm

) 1
σ
follows a Pareto

distribution with scale parameter 1 and shape parameter σα. In other words, Ψ̃ = {σα}.

Although the model has six unknowns, Φ = {µ, σ, α, ψm, λ, r}, Υ has only four elements. In fact,

using the threshold equation (8) we can vary r or ψm, and change σ while keeping ασ, λ and
µ
σ constant

in order to keep ln(ψmθ̃
∗
)

σ constant. In other words, without more information we cannot separately

identify r, ψm and the level of the parameters of the profitability process α, µ and σ. Put differently,

we do not need to identify these parameters to obtain predictions on survival probabilities.

Now focus on µ̃ = µ
σ . In the benchmark model, equation (12) shows that survival probabilities

depend only on this ratio. In the full model, although this ratio is only one of four arguments in Υ,

the levels of µ and σ are still only weakly identified. The identification problem is illustrated in table

3. First, fixing µ = −0.1, ψm = 1 and r = 0.1, we estimate σ, α, and λ by the Simulated Method

of Moments (SMM). This is in fact our baseline estimation, discussed below, which we perform using

survival rates of entrants and re-entrants in the first five horizons. Alternatively, we fix µ = −0.05
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and µ = −0.15, set σ to maintain the same ratio µ
σ , and estimate α and λ by the SMM with the

same moments. The identification problem is manifest in the comparison across columns. Despite the

wide variation of µ and σ across the three parameter configurations, they all deliver similar survival

predictions.

Given the identification scope of survival probabilities, we set µ = −0.10, r = 0.10 and ψm = 1

and estimate {σ, α, λ}. Note that the assumption that the scale parameter of the Pareto distribution

is 1 implies that the firm will always improve profitability when the shock arrives. In this sense, we

can interpret it as a learning shock. We think this is a reasonable assumption as firms are likely to go

through a learning period while operating in a foreign market.

We simulate the model by generating 10000 artificial export profit trajectories. An export profit

trajectory consists of three independent random components: a GBM trajectory for θ̃t, a realization

of the learning shock ψ, and a Poisson process governing its arrival. In the computer, we can only

simulate an approximation to a continuous process —both for the GBM and the Poisson processes —by

discretizing the time space. We artificially create calendar years and divide each in N = 1000 intervals

(each represented by its middle point) to make this approximation as precise as possible subject to

computing constraints. Since all predictions of the model can be expressed in terms of normalized

profits and since all firms first enter at θ̃t = θ̃
∗
, we generate 10000 trajectories for θ̃t that start at

this threshold value. We assume that firms’entrance is uniformly distributed along the unit interval

during year 0. To gain simulation precision minimizing loss in computer effi ciency, each simulation is

used 1000 times by sliding the entry time during the first year along each of its 1000 intervals.

For each simulation, we track whether ψθ̃t ≥ 1 for an experienced firm or θ̃t ≥ θ̃
∗
for an inexperi-

enced firm in each of the 1000 intervals of each calendar year. Whenever a firm satisfies this condition

in at least one interval of a calendar year, we consider it to have survived in that year. For entrants,

we only need to keep track of survival status in the next five years after the start of the simulation

process. The survival probabilities {PT }T=1,...,5 are computed as the proportion of surviving firms in

each of the first five years. Computing the survival probabilities of re-entrants (PRT ) is more involved.

As discussed in section 3, this probability is a weighted average of the survival probability of entrants,

PT , which applies to inexperienced re-entrants, and the survival probability in the benchmark model,

PBT , which applies to experienced re-entrants. While both of these probabilities are easier to com-

pute, we still need the probability that a re-entrant is experienced to apply appropriate weights (the

proportion of experienced re-entrants is 82% when we simulate the model with the parameters of the

baseline estimation). Furthermore, as this probability varies with age, we also need the age distrib-
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ution of re-entrants in the steady state. Hence, we simulate survival probabilities of re-entrants by

running each simulation up to T = 31 and tracking survival status for five periods after each instance

of re-entry.

The estimated parameters minimize the following objective function:

Ĥ (σ, α, λ) =
[
S − P̂ (σ, α, λ)

]′
W
[
S − P̂ (σ, α, λ)

]
(14)

where P̂ (σ, α, λ) is the simulated vector of survival probabilities, S is the vector of observed sur-

vival rates, and W is a block diagonal weighting matrix. The matrix W has two blocks, ŴE and

ŴR, where Ŵj=E,R are the inverse matrices of the sample analogs of the variance-covariance matrices

E
[
(Sj − E(Sj)) (Sj − E(Sj))

′]. The standard errors we report for the estimated parameters are pre-
liminary and incorrectly-estimated statistics that need to be taken with caution. First, we have yet

not accounted for the various sources of simulation error. Second, we have computed the variance-

covariance matrix as if W were the effi cient weighting matrix, which is not the case. For this reason,

we report them only as indicative but refrain at this point from making comments on their values. We

are currently working on these issues.

4.4 Results

The top part of table 4 displays the estimation results. The estimate of σ is 0.279. Given µ = −0.10,

this estimate implies that ̂̃µ = −.359. This value is not very different from the method-of-moments

estimates of −.0279 and −0.270 obtained by Luttmer (2007) and Arkolakis (2015), respectively, for

this ratio. The similarity might seem striking given that those two papers estimate µ̃ based on

domestic survival rates. However, our model generates lower exporter survival rates primarily due

to the uncertainty and experimentation mechanism rather by imposing a more negative trend in the

profitability process.26 The estimate for the parameter of the Poisson process is λ̂ = 10. This is a very

high value. It implies that a firm that continuously exports has a 56.5% probability of receiving the

learning shock in less than a month. Finally, α̂ = 3.736, which implies a standard deviation of 0.54

for the multiplicative shock ψ.

The second part of table 4 compares the data with the model predictions. A visual representation

of the same information is provided in figure 3. The model does a good job predicting the survival rates

of entrants. In particular, it predicts a survival profile that is both low and flat. The average absolute

26This result also suggest that our model could potentially provide a unifying framework for understanding both

domestic and export survival.
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discrepancy between data and predictions is three percentage points, with the largest discrepancy in

the second year (27% in the model versus 21% in the data). The model predictions are less accurate

in the case of re-entrant survival rates. In this case, the average discrepancy between data and model

predictions is five percentage point with a particularly large underprediction in the first year (46%

in the model versus 61% in the data). Nevertheless, the model is still able to deliver the qualitative

fact that re-entrants survive more than entrants. It is interesting to notice that the diffi culty of the

model to explain the low survival rate of re-entrants also explains why there is a relatively large

discrepancy for entrants in period 2. The following trade-off arises. Setting a higher λ, the model can

achieve a better fit for the survival profile of entrants by flattening its slope between periods 1 and 2.

However, a higher λ also implies a larger proportion of experienced re-entrants and hence even higher

predictions for their survival in the earliest periods. A potential hypothesis that might explain the

quantitative discrepancy between predictions and data in the case of re-entrants is that the resolution

of uncertainty takes places in “steps” rather than in one event. This alternative structure for the

resolution of uncertainty might generate survival predictions for re-entrants that are closer to those

for entrants. In the sake of parsimony, we leave such extension of our model for future research.

4.5 Alternate models without uncertainty and experimentation

In this section, we discuss why other models that do not include uncertainty and experimentation are

unable to explain facts 1 and 2. First, we estimate the benchmark model and extensions that include

sunk costs and an exogenous death rate. Then, we estimate another version of the benchmark model

where we substitute a mean-reverting Geometric Ornstein-Uhlenbeck (GOU) process for the GBM

profitability process we have been assuming so far. Finally, we nest the GBM and GOU processes by

expanding the latter allowing long-run profitability to (potentially) drift downwards over time.

Brownian motion The benchmark model is the starting point in the class of models that assumes

a GBM profitability process but does not assume uncertainty and experimentation. It is easy to see

why this model is not a useful alternative. Since entrants and re-entrants enter and exit at θ̃
∗

= 1, in

both cases survival probabilities are identical. Therefore, this model is unable to explain fact 2. In

fact, the benchmark model is also unable to explain fact 1. The light-colored dotted line in figure 1

(discussed in section 2) corresponds to the best prediction of the benchmark model. This prediction is

obtained by estimating the model with the SMM using only the survival profile of entrants {St}t=1,...,5.

In this case, the only parameter to estimate is the ratio µ̃ = µ
σ . Table 5 shows that the estimate of this
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parameter is ̂̃µ = −0.67, which is much more negative than the estimate for this ratio that we obtain

in the full model. The table also presents the predicted survival rates using this estimate. These are

the predictions depicted in figure 1. We can see that the model overpredicts survival rates at short

horizons while it underpredicts them at longer horizons. In unreported results, we have also included

a constant exogenous death rate in the benchmark model and included it as an additional parameter

to estimate. The SMM estimation delivers a value of 0 for this parameter. Thus, this exogenous

proportional death rate cannot help explain the disproportionate amount of exit during the first year.

Next, we extend the benchmark model to include sunk costs (S). Sunk costs have been the focus of

most theoretical and empirical work on exporter dynamics (Baldwin and Krugman 1989, Dixit 1989,

Roberts and Tybout 1997, Alessandria and Choi 2007, Das et al. 2007, Impullitti et al. 2013, Morales

et al. 2014). More specifically, we assume that when firms switch from non-exporter to exporter in a

given market for the first time, they need to pay a sunk cost S. Given that incurring the sunk cost is

an irreversible decision, firms only enter with profitability above the exit threshold, which raises the

probability of survival at short horizons relative to longer ones. This is exactly the opposite of what

is needed to fit the observed survival profile. Hence, sunk costs do not help explain fact 1.

Finally, although we have assumed that sunk costs only need to be paid the first time a firm

exports, a straightforward extension is to assume that a firm needs to pay a fraction φ ∈ [0, 1] of the

original sunk cost in subsequent export experiences. This would generate an inaction region
[
θFT , θ̄FT

]
such that firms start exporting when θ ≥ θ̄FT and stop exporting when θ ≤ θFT during their first

export experience while it would similarly generate an inaction region for re-entrants
[
θRE , θ̄RE

]
with

θRE = θFT and θ̄RE ≤ θ̄FT (with equality iff φ = 1). If φ = 1, then (first-time) entrants and re-

entrants have equal survival probabilities. In the more general case of φ < 1, re-entrants survive less

than entrants as their inaction region is smaller. This prediction goes against explaining fact 2.27

Hence, this extension of the benchmark model is also qualitatively unable to explain this fact.28

More general diffusions Most empirical work on export dynamics has modelled the logarithm

of operating profits as a mean-reverting process. To accommodate this possibility, we change the

specification of the profitability process to the continuous-time analog of an AR1 in logarithms, a

27 In fact, if some entrants were allowed to be born above the entry threshold then, since re-entrants necessarily enter

the market at the threshold, the counterfactual prediction would arise even with φ = 1.
28Note that fact 2 may explain why Das et al. (2007) find that sunk-costs fully depreciate (φ = 1). By having entrants

and re-entrants pay similar sunk costs, the estimated model might want to minimize the failure of the sunk-cost model

to explain fact 2.
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Geometric Ornstein-Uhlenbeck process (GOU):

dθt = η
(
log
(
θ̄
)
− log (θt)

)
θtdt+ σθtdWt.

As is usual in the exporter dynamics literature, we assume that the parameters that govern the

law of motion of profitability (i.e. η, log
(
θ̄
)
and σ) are common across firms after controlling for

observable characteristics. We also allow for an exogenous death rate δ > 0, which in the context of a

stationary process becomes necessary to generate the downward sloping profile of survival probabilities,

particularly at long horizons.

Although this specification of the profitability process might improve the ability of the model to fit

fact 1, since all entries and exits take place at the same threshold level θ∗GOU , the model still predicts

the same survival probability for entrants and re-entrants. Thus, it is also unable to explain fact 2.

This result is in fact more general. Assume that θ follows any general diffusion,

dθt = µ (θt) dt+ σ (θt) dZt, (15)

that satisfies that if θ′ > θ′′, then F
(
θt+s|θ′

)
≤ F

(
θt+s|θ′′

)
(a first-order-stochastic-dominance condi-

tion) and regularity conditions such that there is a unique solution to (15) and the value functions are

bounded.29 Then, the optimal policy will still be characterized by a unique entry and exit threshold

both for entrants and for re-entrants and hence produce the identical survival probabilities. As a

result, the inability to explain fact 2 generalizes to this broader class of models. Furthermore, intro-

ducing entry sunk costs S ≥ 0 and re-entry sunk costs φS ≥ 0, as analyzed in the case of a GBM, just

worsens the problem by inducing lower survival rates for re-entrants.

Estimated and calibrated models of exporter dynamics (Alessandria and Choi 2007, Das et al.

2007, Ruhl and Willis 2014) also have two additional features that are worth considering. A first

feature is that while we assume that firms are born below the threshold θ∗, these models assume that

firms are born with a profitability taken from the stationary distribution (as implied for example by an

AR1). As discussed earlier, having entrants be born above the exit threshold only worsens the inability

of this model to explain fact 2. A second feature of those models is allowing for idiosyncratic random

processes — i.i.d. across firms and over time — for fixed and sunk costs. However, given that firms

in these models are born with the stationary distribution, the composition of the pool of first-time

29The first-order stochastic dominance condition is a natural and common assumption in the literature that prevents

strange cases in which the firm is very profitable today but does not pay the sunk cost because it knows this high

profitability will be the cause of low profitability tomorrow.
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entrants is exactly the same as the pool of re-entrants (when φ = 1; if φ < 1 as usual the pool of

re-entrants has lower sunk-costs), so entrants and re-entrants have the same probability of survival.

Finally, following Arkolakis (2015), we extend the GOU model to include a deterministic trend in

long run profitability. More specifically, θ now follows

d log (θa,t) = η
(
log
(
θ
)

+ µa− log (θa,t)
)
da+ µda+ σdWa

where a is the age of the firm and t is calendar time.30 As in Luttmer (2007) and Arkolakis (2015),

the negative trend captures the fact that older technologies become obsolete, implying that we need to

keep track of the age of the firm. This process nests the GBM and GOU processes we have considered

so far. If η = 0, then we obtain a GBM. If η > 0 but µ = 0, then we obtain a GOU. Note also

that if σ = 0, so that the process is deterministic, firm profits drift downwards at log-rate µ. This

flexible specification is able to fit the survival profile of entrants (fact 1). In addition, the deterministic

trend generates heterogeneity in survival probabilities across entrants since older firms have lower long

run profitability and, thus, survive less as they mean-revert more rapidly. Thus, it also generates

a composition effects that may explain fact 2. However, setting parameters that allow the model

to match fact 1, the composition effect goes in the opposite direction of explaining fact 2. Since

re-entrants tend to be older firms, they re-enter further away from their long-term profitability and

hence tend to survive less than entrants.

5 Mechanisms

We have presented two facts about exporter survival and developed a model with uncertainty and

experimentation in export markets that naturally explains them. We have also shown that the most

representative exporter dynamics models that do not include these elements are unable to explain the

two facts simultaneously. In this section, we provide further evidence of the relevance of uncertainty

and experimentation in the dynamics of firm exports by associating variation in the parameter α to

observed characteristics of products and markets.

When α is lower, the distribution of ψ has fatter tails. Furthermore, both the mean and the

variance of the distribution of ψ increase. While the variance may be associated with uncertainty, the

fact that the mean increases is associated with learning-by-exporting. Proposition 4 helps us separate

both effects. Suppose we lowered α while varying ψm in order to keep the mean of the distribution

30We set δ = 0 for this exercise.
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constant, i.e. ψm = α−1
α . It can be checked that the variance of the shock decreases with α even

after the compensating ψm effect (provided the variance exists, i.e. α > 2). Next, note that by

proposition 4, decreasing ψm lowers the probability of survival. In other words, if we lowered α alone

and the probability of survival decreased, then correcting for the effect of the mean with ψm can only

exacerbate the effect on the probability of survival. Henceforth, we ignore the effect on the mean and

talk about decreasing α as intensifying uncertainty but it should be clear that the effect of this change

on survival probabilities would be stronger if we corrected for the mean.

Since profits are increasing and convex in ψ, it is unsurprising that the threshold θ̃
∗
goes up with

α. Consider a decrease in α such that the variance increases. Conditional on a realization of ψ the

firm will survive less. On the other hand, a larger variance of ψ implies that there are more firms that

receive a realization of the shock from the upper tail of the distribution, who are less likely to exit

later on. Since the estimated GBM process has a negative drift, this effect is relatively more relevant

in the long run, where only firms that have benefited from a very good draw of ψ survive. Although

the net effect is ambiguous, we show with simulations that the “threshold effect”dominates. That is,

a lower (higher) α implies a lower (higher) probability of survival. This result is displayed in table 6.

Across columns from left to right, we maintain all parameters in their estimated values but set α so

that the dispersion of the learning shock decreases from four times to a quarter of its estimated value.

Accordingly, the predicted survival rates increase uniformly as α increases.

We do not observe α. However, the magnitude of this parameter can be linked to observable

characteristics of products and export destinations. Since α governs the variance of the shock, its

magnitude captures the degree of uncertainty about the component of export market profitability

that can be resolved by experimenting.31 As discussed in section 3, possible sources are the need to

adapt products to satisfy foreign demand idiosyncrasies and the need to match with distributors that

will make efforts to propel sales of the firm’s products. It is reasonable to assume that these sources

of uncertainty are more relevant for differentiated products than for homogeneous products. Thus, we

expect a lower α, and hence a lower PT , for the former type of products.

To test this implication, we classify all incursions in our database in either of two categories,

differentiated or homogeneous, following Rauch (1999).32 We first map export data classified at the

Harmonized System 10-digit level into Rev.2 SITC 4-digit categories using the Conversion Tables

31The remaining component, i.e. uncertainty about the future trajectory of the GBM process, remains unresolved

after the shock.
32We merge homogeneous and referenced-priced categories in Rauch (1999) into only one “homogeneous”category.
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from the United Nations Statistics Division. Then, we map the latter categories into one of our two

categories.33 Finally, we identify the category with the largest value of exports in the year of entry

and assign the incursion to that category. There are 20, 907 differentiated incursions and 13, 120

homogenous incursions in our database. For each of these categories, the survival profile is displayed

in figure 4. Consistent with the hypothesis of a lower α for differentiated products, these products

display uniformly lower survival rates. For example, the survival rate is more than six percentage

points lower in the first year after entry and more than four percentage points lower in the fifth year.

Similar results are obtained in a regression framework, where we can perform inference and control

for other covariates. We regress the survival status of each incursion-horizon combination on dummies

for horizon and a dichotomous variable for differentiated products. The results, displayed in column

1 of table A.2, show that the survival rate of differentiated products is significantly lower than for

homogeneous products. We also interact the differentiated dummy with horizon dummies. Column 2

shows that the survival rate of incursions in differentiated products is lower at all horizons. Columns

3 and 4 show that these results are not an artifact of composition effects. The results are very similar

when we replicate the regressions in the first two columns by adding a full set of product (2-digit HS),

destination, and year fixed effects.

Since a fraction of re-entrants in differentiated products has already resolved their uncertainty, we

should expect a smaller gap between re-entrant survival rates in differentiated versus homogeneous

products than between entrant survival rates in the two types of products. Figure 5 displays re-entrant

survival profiles in these two cases (for reference we also include survival profiles for entrants). As

predicted, the gap is smaller for re-entrants than for entrants. The prediction is formally tested by

performing a diff-in-diff estimation. We regress the exporting status of each incursion-horizon and

re-incursion-horizon combination on entrant horizon dummies, re-entrant horizon dummies, a dummy

for differentiated products, and an interaction dummy for re-entrants in differentiated products. We

cluster standard errors by firm-destination allowing for correlation between incursions and re-incursions

at any horizon. Consistent with the prediction of a smaller gap for re-entrants in differentiated versus

homogenous products, we find a positive and significant (at the 10% level) estimated coeffi cient on

the interaction term (column 5). A similar result is obtained by interacting the differentiated product

dummy with horizon dummies (column 6) and by adding a full set of product, destination, and year

33The mapping from SITC to Rauch leaves 5.74% of the instances unclassified. We reduce this proportion to 2.33%

by arbitrarily assigning unclassified SITC 4-digit categories the classification of similar SITC 4-digit categories. Of the

remaining unclassified instances, 60% are transactions without reported HS-code.
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fixed effects (columns 7 and 8). We note, however, that given the high proportion of experienced

re-entrants in the baseline estimation, the predicted magnitude of the gap is substantially larger than

is observed in the data. This result is in line with the quantitative diffi culty of the model to match

the survival rates of re-entrants discussed in section 4.4. Re-entrants exhibit survival patterns that

are considerably more similar to those for entrants than predicted by the model.

The uncertainty surrounding export market profitability could also be hypothesized to vary ac-

cording to distance to the destination. In the first place, neighboring countries are more likely to have

similar income levels and thus share similar consumption patterns. In the second place, even control-

ling for income levels, demand idiosyncrasies are more likely to coincide the closer are the exporter

and the importer. In the third place, less distant countries are more likely to have a more similar

business culture that facilitates communication with distributors and anticipation of their actions. As

a result, we could expect a higher degree of uncertainty about export market profitability in more

distant destinations. Setting a smaller α for those destinations, the model predicts lower survival

probabilities in those cases. To assess this prediction, we divide export destinations into three groups

according to their distance from Peru. Short distance destinations are those with a distance smaller

than 3440 km. Medium distance destinations are those with a distance between 3440 km. and 10100

km. Long distance destinations are those with a distance above 10100 km. The cut-offs are chosen so

that each distance group has an equal number of incursions. Figure 6a displays the survival profile for

each distance group in the case of differentiated goods. We can see that the profile is uniformly lower

the farther away is the destination. For example, one year after entry the survival rate for the long

distance group is six percentage points lower than for the short distance group while five years after

entry the survival rate for the former group is five percentage points lower. Figure 6b displays anal-

ogous information in the case of homogeneous products, where it is unclear whether distance should

matter. In this case, we do not see lower survival rates in more distant destinations. If anything, the

opposite seems to be the case.

These results also arise in a regression framework where in addition to controlling for other covari-

ates we can also control for distance as a continuous variable. The results are displayed in table A.3.

In column 1 we only control for horizon fixed effects, a fixed effect for differentiated products, and

the interaction of distance with fixed effects for differentiated and homogenous products, respectively.

In accordance with the graphical results, we see that distance decreases survival rates in the case of

differentiated products but increases them in the case of homogenous products. Column 2 presents

the results of analogous regression interacting the variables above with horizon dummies. While the
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coeffi cient on the interactions for differentiated products are uniformly negative and significant at

every horizon, the magnitude and statistical significance of the positive coeffi cients for analogous in-

teractions in the case of homogenous products are more disparate. Similar results are obtained when

we reproduce these regressions including the usual set of product, destination, and year fixed effects.

In the case of differentiated products, where distance matters, we should also expect a smaller

gap for re-entrants across distance groups. Figure 7 displays the relevant survival profiles (survival

profiles for entrants are also included for reference). In this case, the prediction is not borne by the

data. The gap in survival rates across distance groups does not dwindle for re-entrants. Regression

analysis confirms this result. Column 1 of table A.4 reports the result of regressing survival status of

entrants and re-entrants on horizon dummies, a dummy for re-entrants, a control for distance, and

this control interacted with the re-entrant dummy. The interest is in the coeffi cient on the latter

interaction. The estimated sign is opposite to the prediction albeit not significantly different from

zero. Similar results are obtained when all three terms are interacted with horizon dummies (column

2) and when we include the full set of fixed effects (columns 3 and 4). Once again, re-entrants display

survival patterns that are more similar to those of entrants than predicted by the model.

In sum, the results of this section show that reasonable assumptions about how α varies across

products and destinations yield predictions that are consistent with the data in most cases. We regard

those results as supportive of the notion that uncertainty and experimentation are crucial features in

the dynamics of firm exports.

6 Concluding remarks

This paper develops a model of exporter dynamics with uncertainty and experimentation. The model

is parsimonious and has tractable features that allow us to obtain analytical results on survival proba-

bilities. Those results explain two central facts about export survival in foreign markets that existing

models that neglect uncertainty and experimentation are unable to account for. The first fact is that

the survival profile of export entrants is low and flat. The second is that re-entrants to foreign markets

display higher survival rates than first-time entrants. Based on the analytical results we derive, we

can estimate the parameters of the model and derive quantitative predictions on these two facts. The

importance of uncertainty and experimentation in exporter dynamics is further supported by evidence

that exploits hypothesized variation in the degree of uncertainty about foreign market profitability

across products and distance to the destination.
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The paper also makes a methodological contribution to the literature on firm and exporter dynamics

by proposing a correction for the mismatch between a model set in continuous time and data recorded in

discrete-time periods. This correction has a substantial impact on the model predictions. Conceptually,

the correction is more general than our specific application here since the source of mismatch arises even

in discrete time models. In particular, it should be applied whenever there is a discrepancy between

the frequency at which firms make decisions and the frequency at which the data are recorded. In

addition to correcting survival predictions, analogous adjustment could be made to correct for other

key variables in dynamic models such as the amount of sales and their growth. We are currently

working on developing such corrections.

While focusing on export survival, we hope to contribute to a broader literature that attempts to

characterize the main features in the dynamics of firm exports. Furthermore, in newer versions of this

paper we hope to provide theoretical and empirical results showing that understanding survival is the

cornerstone of understanding exporter dynamics more generally.
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Appendix 1. Proof of Proposition 1 We will prove the result under the following (more general) conditions,
A1. Eψπe (ψ, θ) ≥ πi (θ) ∀ψ, θ. πe is continuous, πi belongs to C2 and both are weakly increasing in θ

∀ψ. ψ and θ are independent.
A2. Let h ≡ λEψ (max {πe (θ;ψ) , 0}) − limdt→0

{
E
(
e−rdtπi (θt+dt)

)
− πi (θt)

}
. If λ > 0, h (θ) is

weakly increasing in θ. Furthermore, E
[∫∞

0 e−rth (θt) dθt|θ0

]
satisfies a polynomial growth condition.34

A3. There exists θ̄ such that ∀θ > θ̄, flow profits are positive even for inexperienced firms, πi (θ) ≥ 0.
A4. The profitability process {θt} is assumed to follow a diffusion,

dθt = µθdt+ σθdZt (16)

where Zt is a standard brownian motion. We assume µ (θ) and σ (θ) are continuous functions of θ that satisfy
Lipschitz and growth conditions on µ and σ.35 Furthermore, if θ′′ > θ′, then F

(
θ|θ′′

)
%FOSD F

(
θ|θ′
)
.

A5. EψVe satisfies a polynomial growth condition ∀θ
A1 is satisfied in the model in the text because E (ψ) ≥ 1. Applying Ito’s Lemma to A2 we get

h ≡ λEψπe (θ;ψ) + rπi (θ)− µθ
dπi (θ)

dθ
− 1

2
σ2
θ

d2πi

dθ2

In the model in the text,

h ≡ Eψ
[
max

{
ψθ̃ − 1, 0

}]
+
r

λ

(
θ̃ − 1

)
− µθ̃

λ

which is clearly increasing in θ̃ (recall r−µ > 0). Furthermore A3 is satisfied taking θ̄ = F
κ and A4 is satisfied

by the GBM assumption (µθ = µθ and σθ = σθ). Finally A5 is satisfied by assumption. In the Pareto case,
for example, it can be shown that

EψVe

(
θ̃
)

= F

 2
(α−1)(β1−α)(α−β2)σ2

θ̃
α − Ae1α

β1−α
θ̃
β1 if θ̃ < 1

αAe2
α−β2

θ̃
β2 + α

(r−µ′)(α−1) θ̃ −
1
r if θ̃ ≥ 1

,

for some constants Ae1 and Ae2, which clearly satisfies a polynomial growth condition.
First, we prove the following result,

Lemma 1. Exporting is optimal for an inexperienced firm when θ > θ̄

Proof. Exporting while θ > θ̄ yields additional flow profits πi (θ) ≥ 0 in [θ̄,+∞) if the firm remains inexperi-
enced and increases the odds of becoming experienced, which increases profits in expectation byEψ (max {πe (θ;ψ) , 0})−
max {πi (θ) , 0} ≥ 0 ∀θ. Hence, exporting is optimal in this region.

Define πEE (θ) ≡ Eψ (max {πe (θ, ψ) , 0}). Note that the flow benefits of exporting (W ) are given by

W = πi + λ (Ve − Vi) .

Since yi is piecewise continuous, Vi is continuous. Given that πi and Ve are continuous, this implies W is
continuous. Assuming an indifferent firm exports, a firm will export iffW ≥ 0. By A1 and the possibility of

34We say that f : [0,∞) → R satisfies a polynomial growth condition if there exist M > 0 and ν > 0 such that

|f (θ)| ≤M (1 + θν)
35We say that µ satisfies a Lipschitz condition if there exists k > 0 such that∣∣µ (θ)− µ (θ′)∣∣ ≤ k ∣∣θ − θ′∣∣ .

This ensures the existence of a strong solution to (15)
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inaction we know that 0 ≤ Vi (θ) ≤ Ve (θ) < ∞ ∀θ. Moreover, since W is continuous and πe and πi are
continuous, by Feynman-Kac Theorem we know that Vi, Ve ∈ C2 and, thus,W ∈ C2. Hence, Ve and Vi satisfy
the following Hamilton-Jacobi-Bellman equations,

rV E = πEE + µθ
dVe
dθ

+
1

2
σ2
θ

d2Ve

dθ2 ∀θ (17)

(r + λ)Vi = πi + λVe + µθ
dVi
dθ

+
1

2
σ2
θ

d2Vi

dθ2 when W (θ) ≥ 0 (18)

rV I = µθ
dV I

dθ
+

1

2
σ2
θ

dVi
dθ

when W (θ) < 0 (19)

Next, substract (27) and (28) from (17) to obtain,

(r + λ) (Ve − Vi) = πEE − πi + µθ

(
dVe
dθ
− dVi

dθ

)
+

1

2
σ2
θ

(
d2Ve

dθ2 −
d2Vi

dθ2

)
when W (θ) ≥ 0 (20)

r (Ve − Vi) = πEE + µθ

(
dVe
dθ
− dVi

dθ

)
+

1

2
σ2
θ

(
d2Ve

dθ2 −
d2Vi

dθ2

)
when W (θ) < 0 (21)

Rewrite (20) and (21) in terms of W to obtain(
r + λ

λ

)
(W − πi) = πEE − πi +

µθ
λ

(
dW

dθ
− dπi

dθ

)
+

1

2

σ2
θ

λ

(
d2W

dθ2 −
d2πi

dθ2

)
when W (θ) ≥ 0( r

λ

)
(W − πi) = πEE +

µθ
λ

(
dW

dθ
− dπi

dθ

)
+

1

2

σ2
θ

λ

(
d2W

dθ2 −
d2πi

dθ2

)
when W (θ) < 0

where we used the fact that πi ∈ C2. Rearranging,(
1 +

r

λ

)
W = πEE +

r

λ
πi −

µθ
λ

dπi
dθ
− 1

2

σ2
θ

λ

d2πi

dθ2 +
µθ
λ

dW

dθ
+

1

2

σ2
θ

λ

d2W

dθ2 when W (θ) ≥ 0(
1 +

r

λ

)
W = W + πEE +

r

λ
πi −

µθ
λ

dπi
dθ
− 1

2

σ2
θ

λ

d2πi

dθ2 +
µθ
λ

dW

dθ
+

1

2

σ2
θ

λ

d2W

dθ2 when W (θ) < 0.

Define h ≡ πEE + r
λπi −

µθ
λ
dπI

dθ −
1
2
σ2θ
λ
d2πi
dθ2

, which is exactly A1 after applying Ito’s Lemma. We can rewrite
this as (

1 +
r

λ

)
W = W1W<0 + πEE +

r

λ
πi −

µθ
λ

dπI

dθ
− 1

2

σ2
θ

λ

d2πi

dθ2 +
µθ
λ

dW

dθ
+

1

2

σ2
θ

λ

d2W

dθ2 . (22)

By assumptions A2 and A5, we know that W and h satisfy a polynomial growth condition. Furthermore, we
know thatW is continuous. Hence, by Feynman-Kac theorem (Duffi e, Appendix E, p.344), the unique solution
that satisfies a polynomial growth condition to (22) is given by

W (θ0) = E

(∫ ∞
0

e−(1+ r
λ)t {W (θt)1W (θt)<0 + h (θt)

}
dθt|θ0

)
.

The solution requires W ≥ 0 for θ ≥ θ̄. Thus, W solves

W (θ) = E

(∫ ∞
0

e−(1+ r
λ)t
{
W (θt)1W (θt)<0∩θt<θ̄ + h (θt)

}
dθt|θ0

)
(23)

W (θ) ≥ 0 for θt ≥ θ̄ (24)
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First, we solve (23) disregarding (24),

W̃ (θ) = E

(∫ ∞
0

e−(1+ r
λ)t
{
W̃ (θt)1W̃ (θt)<0∩θt<θ̄ + h (θt)

}
dθt|θ0

)
(25)

Lemma 2. There is a unique continuous solution W̃ to (25).

Proof. Define the operator T : C (X)→ C (X) as the RHS on (25) restricted to
[
0, θ̄
]
, where C is the space

of continuous and bounded functions. Note that T is well-defined in the sense that if f ∈ C, Tf ∈ C. Next,
we show that T satisfies monotonicity and discounting:
(i) Monotonicity. Take f ≥ g. Then,

Tf (θ0) = E

(∫ ∞
0

e−(1+ r
λ)
{
f (θt)1f(θt)<0∩θt<θ̄ + h (θt)

}
dθt|θ0

)
≥ E

(∫ ∞
0

e−(1+ r
λ)
{
g (θt)1f(θt)<0∩θt<θ̄ + h (θt)

}
dθt|θ0

)
≥ E

(∫ ∞
0

e−(1+ r
λ)
{
g (θt)1g(θt)<0∩θt<θ̄ + h (θt)

}
dθt|θ0

)
= Tg (θ0)

The first step uses f ≥ g while the second step uses the fact that if f (z) < 0⇒ g (z) < 0 so g (z) 1g(z)<0 =

g (z) 1f(z)<0 + g (z) 1f(z)≥0∩g(z)<0 ≤ g (z) 1f(z)<0.
(ii) Discounting. Take a > 0. Then,

T (f (θ0) + a) = E

(∫ ∞
0

e−(1+ r
λ)
{

(f (θt) + a)1f(θt)+a<0∩θt<θ̄ + h (θt)
}
dθt|θ0

)
= E

(∫ ∞
0

e−(1+ r
λ)
{

(f (θt) + a)1f(θt)<0∩θt<θ̄ + h (θt)− (f (θt) + a)1−a≤f(θt)<0∩θt<θ̄

}
dθt|θ0

)
≤ Tf (θ0) + aE

(∫ ∞
0

e−(1+ r
λ)1f(θt)<0∩θt<θ̄dθt|θ0

)
≤ Tf (θ0) +

a

1 + r
λ

Since r > 0 by A5, the result follows. Thus, by Blackwell’s theorem T : C (X) → C (X) is a contraction.
Since W̃[0,θ̄] ∈ C (X), by the contraction mapping theorem there exists a unique continuous W̃ : [0, θ̄] → R
that solves (25). Given this, W̃ (θ) for θ > θ̄ is uniquely defined from (25).

Next, we show that W = W̃ ,

Lemma 3. W = W̃

Proof. Let Vi be the value function associated with the export strategy "export iff W̃ ≥ 0 or θ ≥ θ̄". Note
that W̃ = πi + λ (Ve − Vi). Since Vi ≤ Vi ≤ Ve, it follows that W̃ (θ) ≥ πi (θ) ≥ 0 ∀θ ≥ θ̄. Hence, W̃ is a
solution of (23). Note that since W̃ is unique, there can be no other continuous solution.

Lemma 4. W is weakly increasing

Proof. Take some weakly increasing function f and apply T for θ ∈ [0, θ̄],

Tf (θ) = E

(∫ ∞
0

e−(1+ r
λ)
{
f (θt)1f(θt)<0∩θt<θ̄ + h (θt)

}
dθt|θ0

)
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Since f (z) 1f(z)<0∩θ<θ̄+h (z) is weakly increasing and θ has the FOSD property, Tf is also weakly increasing.

Since the space of bounded, continuous and weakly increasing functions is complete, W̃ is also weakly increasing
in
[
0, θ̄
]
. By Lemma 3, W (θ) is weakly increasing in

[
0, θ̄
]
. SinceW ≥ 0 for θ ≥ θ̄, (23) immediately implies

W is weakly increasing also for θ ≥ θ̄.

Now we are ready to prove the main result,

Proposition 5. The unique piecewise continuous optimal strategy features a threshold θ∗ for θ < θ∗ not
exporting is optimal while for θ > θ∗ exporting is optimal.

Proof. Since W is continuous, Vi ∈ C2 everywhere and satisfies the following HJB,

rV I = max {W, 0}+ µ′θ
dV I

dθ
+

1

2
σ2θ2d

2Vi

dθ2 .

If λ = 0, then W = πi and by A1 the result follows. If λ > 0, then by Lemma 3 W is weakly increasing, so it
follows that there exists a unique θ∗ ∈

[
0, θ̄
]
such that W ≥ 0 for θ > θ∗ and W < 0 for θ < θ∗.

Note that since θ∗ ≤ θ̄ = F
κ , θ̃

∗ ≤ 1. Furthermore, since W
(
θ̃
∗)

= 0 and EψVe − Vi > 0 when θ̃ = 1

and ψ 6= 1, it follows that θ̃
∗
< 1 in this case.

Appendix 2. Derivation of the threshold equation (8) In the GBM case, the HJB equations become

rEψ (Ve) = πEE (θt) + µ
dEψVe
dθ

+
1

2
σ2d

2EψVe

dθ2 (26)

(r + λ)Vi = πi + λEψVe + µ
dVi
dθ

+
1

2
σ2d

2Vi

dθ2 when θ > θ∗ (27)

rV I = µ
dVi
dθ

+
1

2
σ2dVi

dθ
when θ < θ∗ (28)

Define ∆V ≡ Eψ (Ve)− Vi. Substracting (27) and (28) from (26) yields

(r + λ) ∆V = πEE (θ)− πi + µ
d∆V

dθ
+

1

2
σ2d

2∆V

dθ
when θ > θ∗ (29)

r∆V = πEE (θ) + µ
d∆V

dθ
+

1

2
σ2d

2∆V

dθ
when θ < θ∗ (30)

When θ > θ∗, the solution to (29) is given by36

∆V (θ) =
1

J̃

[∫ ∞
θ

(
θ

z

)β̃1 (
πEE (z)− πi (z)

) dz
z

+

∫ θ

θ∗

(
θ

z

)β̃2 (
πEE (z)− πi (z)

) dz
z

]
+C1Uθ

β̃1+C2Uθ
β̃2

where

J̃ =

√(
µ− 1

2
σ2

)2

+ 2 (r + λ)σ2 ≥
∣∣∣∣µ− 1

2
σ2

∣∣∣∣
β̃1 =

−
(
µ− 1

2σ
2
)

+ J̃

σ2
> 1

β̃2 =
−
(
µ− 1

2σ
2
)
− J̃

σ2
< 0

36See formula 5.24. in Stokey (2008).
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and C1U and C2U are unknown constants. Using the transversality condition, C1U = 0.
Note the derivative wrt θ is

d∆V

dθ
=

1

θ


β̃1

1
J̃

∫∞
θ

(
θ
z

)β̃1 (πEE (z)− πi (z)
)
dz
z

+β̃2
1
J̃

∫ θ
θ∗
(
θ
z

)β̃2 (πEE (z)− πi (z)
)
dz
z

+β̃2C2Uθ
β̃2


When θ < θ∗, the solution to (30) is given by

∆V (θ) =
1

J

[∫ θ∗

θ

(
θ

z

)β1
πEE (z)

dz

z
+

∫ θ

0

(
θ

z

)β2
πEE (z)

dz

z

]
+ C1Dθ

β1 + C2Dθ
β2

where

J =

√(
µ− 1

2
σ2

)2

+ 2rσ2 ≥
∣∣∣∣µ− 1

2
σ2

∣∣∣∣
β1 =

−
(
µ− 1

2σ
2
)

+ J

σ2
> 1

β2 =
−
(
µ− 1

2σ
2
)
− J

σ2
< 0

and C1D and C2D are unknown constants. Using the initial condition ∆V (0) = 0, C2D = 0.
Note the derivative wrt θ is

d∆V

dθ
=

1

J

1

θ


β1

∫ θ∗
θ

(
θ
z

)β1 πEE (z) dzz

+β2

∫ θ
0

(
θ
z

)β2 πEE (z) dzz

+β1C1Dθ
β1


We have three unknowns, C1D, C2U and θ

∗ . Using the fact that ∆V is C1 at θ∗,

1

J̃

[∫ ∞
θ∗

(
θ∗

z

)β̃1 (
πEE (z)− πi (z)

) dz
z

]
+ C2Uθ

∗β̃2 =
1

J

[∫ θ∗

0

(
θ∗

z

)β2
πEE (z)

dz

z

]
+ C1Dθ

∗β1

1

J̃

[
β̃1

∫ ∞
θ∗

(
θ∗

z

)β̃1 (
πEE (z)− πi (z)

) dz
z

]
+ β̃2C2Uθ

∗β̃2 =
1

J

[
β2

∫ θ∗

0

(
θ∗

z

)β2
πEE (z)

dz

z

]
+ β1C1Dθ

∗β1 .

Next, multiply the first equation by β1 and substract the second equation to obtain,(
β1 − β̃1

J̃

)∫ ∞
θ∗

(
θ∗

z

)β̃1 (
πEE (z)− πi (z)

) dz
z

+
(
β1 − β̃2

)
C2Uθ

∗β̃2 =

(
β1 − β2

J

)∫ θ∗

0

(
θ∗

z

)β2
πEE (z)

dz

z

Rearranging,

C2U =
θ∗−β̃2

β1 − β̃2

{(
β1 − β2

J

)∫ θ∗

0

(
θ∗

z

)β2
πEE (z)

dz

z
+

(
β̃1 − β1

J̃

)∫ ∞
θ∗

(
θ∗

z

)β̃1 (
πEE (z)− πi (z)

) dz
z

}
(31)

Since πEE − πi ≥ 0 and β̃1 ≥ β1, it follows that C2U ≥ 0.
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Next, multiply the first equation by β̃2 and substract the second equation to obtain,(
β̃2 − β̃1

J̃

)∫ ∞
θ∗

(
θ∗

z

)β̃1 (
πEE (z)− πi (z)

) dz
z

=

(
β̃2 − β2

J

)∫ θ∗

0

(
θ∗

z

)β2
πEE (z)

dz

z
+
(
β̃2 − β1

)
C1Dθ

β1

Rearranging,

C1D =
θ∗−β1

β1 − β̃2

{(
β̃1 − β̃2

J̃

)∫ ∞
θ∗

(
θ∗

z

)β̃1 (
πEE (z)− πi (z)

) dz
z

+

(
β̃2 − β2

J

)∫ θ∗

0

(
θ∗

z

)β2
πEE (z)

dz

z

}
(32)

The remaining equation is the fact that by continuity the conjecture can only be true if at the threshold the
firm is indifferent between exporting and not exporting, ie. πi (θ∗) + λ∆V (θ∗) = 0,

πi (θ∗) +
1

J̃
λ

[∫ ∞
θ∗

(
θ∗

z

)β̃1 (
πEE (z)− πi (z)

) dz
z

+ C2Uθ
∗β̃2

]
= 0

Substituting in (31),

πi (θ∗) + λ

 1
J̃

∫∞
θ∗

(
θ∗

z

)β̃1 (
πEE (z)− πi (z)

)
dz
z +

(
1
J

) (β1−β2
β1−β̃2

) ∫ θ∗
0

(
θ∗

z

)β2
πEE (z) dzz

+
(

1
J̃

)(
β̃1−β1
β1−β̃2

) ∫∞
θ∗

(
θ∗

z

)β̃1 (
πEE (z)− πi (z)

)
dz
z

 = 0

Simplifying,

πi (θ∗) +
λ

β1 − β̃2


(
β̃1 − β̃2

)
1
J̃

∫∞
θ∗

(
θ∗

z

)β̃1 (
πEE (z)− πi (z)

)
dz
z

+ 1
J (β1 − β2)

∫ θ∗
0

(
θ∗

z

)β2
πEE (z) dzz

 = 0. (33)

Next, note

β1 − β2 =
2J

σ2

β̃1 − β̃2 =
2J̃

σ2

β1 − β̃2 =
J + J̃

σ2

Thus,

πi (θ∗) + λ

(
2

J + J̃

)[∫ ∞
θ∗

(
θ∗

z

)β̃1 (
πEE (z)− πi (z)

) dz
z

+

∫ θ∗

0

(
θ∗

z

)β2
πEE (z)

dz

z

]
= 0.

As suggested in the text, this equation shows that the model boils down to one equation in one unknown even
if ψ is not multiplicative. For the case in the text, note πEE = Eψ

[
max

{
ψ κθF − 1, 0

}]
and πi = κθ − F .

Replacing,

κθ − F + λ

(
2

J + J̃

) ∫∞θ∗
(
θ∗

z

)β̃1
(Eψ [max {ψκz − F, 0}]− (κz − 1)) dzz

+
∫ θ∗

0

(
θ∗

z

)β2
Eψ [max {ψκz − F, 0}] dzz

 = 0

In terms of θ̃ and redefining z = κz
F .

θ̃ − 1 + λ

(
2

J + J̃

) ∫∞θ̃∗
(
θ̃
∗

z

)β̃1
(Eψ [max {ψz − 1, 0}]− (z − 1)) dzz

+
∫ θ̃∗

0

(
θ̃
∗

z

)β2
Eψ [max {ψz − 1, 0}] dzz

 = 0.
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Appendix 3. Proof of Proposition 2 First, we show that when λ→∞, θ̃∗ (λ)→ 0. Recall the threshold
equation,

θ̃
∗

(λ)− 1 + λ

(
2

J + J̃

) ∫∞θ̃∗(λ)

(
θ̃
∗
(λ)
z

)β̃1
(Eψ [max (ψz − 1, 0)]− (z − 1)) dzz

+
∫ θ̃∗(λ)

0

(
θ̃
∗
(λ)
z

)β2
Eψ [max (ψz − 1, 0)] dzz

 = 0.

Since λ
J+J̃
→∞, it must be that

lim
λ→∞

 ∫∞θ∗(λ)

(
θ∗(λ)
z

)β̃1
(Eψ [max (ψz − 1, 0)]− (z − 1)) dzz

+
∫ θ∗(λ)

0

(
θ∗(λ)
z

)β2
Eψ [max (ψz − 1, 0)] dzz

 = 0

Note that for any θ∗, the first term goes to 0. Then,

lim
λ→∞

[∫ θ∗(λ)

0

(
θ∗ (λ)

z

)β2
Eψ [max (ψz − 1, 0)]

dz

z

]
= 0.

Since h > 0 ∀ψ > M , Eψ [max (ψz − 1, 0)] > 0 ∀z 6= 0. Then,

lim
λ→∞

θ∗ (λ) = 0.

Next, recall the formula for pT ,

pT =


∫ 0
−∞

∫ T
s=0

(
1− e−λs

)
P
(

ln ψ̃ > −xT − ln(ψmθ̃
∗
)

σ

)
ωT (s, x) dsdx∫∞

0

∫ T
s=0

{(
1− e−λs

)
P
(

ln ψ̃ > −xT − ln(ψmθ̃
∗
)

σ

)
+ e−λs

}
ωT (s, x) dsdx

Note that pBT is given by

pBT =

{∫ ∞
0

∫ T

s=0
ωT (s, x) dsdx

Substracting pBT from pT ,

pT − pBT =

∫ 0

−∞

∫ T

s=0

(
1− e−λs

)
P

(
ln ψ̃ > −xT −

ln(ψmθ̃
∗
)

σ

)
ωT (s, x) dsdx

−
∫ ∞

0

∫ T

s=0

{(
1− e−λs

)(
1− P

(
ln ψ̃ > −xT −

ln(ψmθ̃
∗
)

σ

))}
ωT (s, x) dsdx

Next, pick some z̃ > 0 and rewrite the previous expression as

pT − pBT =

∫ z̃

−∞

∫ T

s=0

(
1− e−λs

)
P

(
ln ψ̃ > −xT −

ln(ψmθ̃
∗
)

σ

)
ωT (s, x) dsdx−

∫ z̃

0

∫ T

s=0

(
1− e−λs

)
ωT (s, x) dsdx

−
∫ ∞
z̃

∫ T

s=0

{(
1− e−λs

)(
1− P

(
ln ψ̃ > −xT −

ln(ψmθ̃
∗
)

σ

))}
ωT (s, x) dsdx
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Next, pick some s̃ < T and note

pT − pBT <

∫ z̃

−∞

∫ T

s=0

(
1− e−λs

)
P

(
ln ψ̃ > −xT −

ln(ψmθ̃
∗
)

σ

)
ωT (s, x) dsdx−

∫ z̃

0

∫ T

s=s̃

(
1− e−λs

)
ωT (s, x) dsdx

−
∫ ∞
z̃

∫ T

s=0

{(
1− e−λs

)(
1− P

(
ln ψ̃ > −xT −

ln(ψmθ̃
∗
)

σ

))}
ωT (s, x) dsdx

Next, note that since 1−e−λs → 1 when λ→∞, then ∀ε1 ∈ (0, 1), ∃λ̄1 such that for λ > λ̄1, 1−e−λs > 1−ε1
∀s > s̃. Hence, for λ > λ̄1,

pT − pBT <

∫ z̃

−∞

∫ T

s=0

(
1− e−λs

)
P

(
ln ψ̃ > −xT −

ln(ψmθ̃
∗
)

σ

)
ωT (s, x) dsdx−

∫ z̃

0

∫ T

s=s̃
(1− ε1)ωT (s, x) dsdx

−
∫ ∞
z̃

∫ T

s=0

{(
1− e−λs

)(
1− P

(
ln ψ̃ > −xT −

ln(ψmθ̃
∗
)

σ

))}
ωT (s, x) dsdx

Since 1− e−λs < 1,

pT − pBT <

∫ z̃

−∞

∫ T

s=0
P

(
ln ψ̃ > −x− ln(ψmθ̃

∗
)

σ

)
ωT (s, x) dsdx−

∫ z̃

0

∫ T

s=s̃
(1− ε1)ωT (s, x) dsdx

−
∫ ∞
z̃

∫ T

s=0

{(
1− e−λs

)(
1− P

(
ln ψ̃ > −xT −

ln(ψmθ̃
∗
)

σ

))}
ωT (s, x) dsdx

Next, note ∀ε > 0, z̃ > 0 ∃λ̄2 such that ∀λ > λ̄2, P
(

ln ψ̃ > −z̃ − ln(ψmθ̃
∗
)

σ

)
< ε2 (this uses the fact that for

all M there exists λ̄ such that ∀ λ > λ̄, θ∗ < M ). Next, pick ε2 > 0 and corresponding λ̄2 such that

ε2 < (1− ε1) inf
T∈[T ,T ]

( ∫ z̃
0

∫ T
s=s̃ ωT (s, x) dsdx∫ z̃

−∞
∫ T
s=0 ωT (s, x) dsdx

)
. (34)

Since s̃ < T , the numerator is strictly positive ∀T . Since T > 0, the denominator is also strictly positive. Since
ω is continuous in T , the integrals are continuous functions of T and, since the denominator is always strictly
positive, the quotient of the integrals is continuous in T . Hence, given that

[
T , T

]
is compact, the infimum is

attained and, thus, inft∈[T ,T ]

( ∫ z̃
0

∫ T
s=s̃ ω(s,z;t)dsdz∫ z̃

−∞
∫ T
s=0 ω(s,z;t)dsdz

)
> 0. Hence, ε2 is well-defined.

Picking λ̄3 > max
{
λ̄1, λ̄2

}
and noting P

(
ln ψ̃ > −z − ln(ψmθ̃

∗
)

σ

)
≤ P

(
ln ψ̃ > −z̃ − ln(ψmθ̃

∗
)

σ

)
< ε2

for z ≤ z̃, implies

pT − pBT < ε2

∫ z̃

−∞

∫ T

s=0
ωT (s, x) dsdx− (1− ε1)

∫ z̃

0

∫ T

s=s̃
ωT (s, x) dsdx

−
∫ ∞
z̃

∫ T

s=0

{(
1− e−λs

)(
1− P

(
ln ψ̃ > −xT −

ln(ψmθ̃
∗
)

σ

))}
ωT (s, x) dsdx

From the definition of ε2 it follows that

ε2

∫ z̃

−∞

∫ T

s=0
ωT (s, z) dsdz < (1− ε1)

∫ z̃

0

∫ T

s=s̃
ωT (s, z) dsdz
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∀T ∈
[
T , T

]
. Hence, picking λ̄3 = max

{
λ̄1, λ̄2

}
,

pT − pBT < −
∫ ∞
z̃

∫ T

s=0

{(
1− e−λs

)(
1− P

(
ln ψ̃ > −xT −

ln(ψmθ̃
∗
)

σ

))}
ωT (s, x) dsdx,

which immediately implies pT − pBT < 0.

Appendix 4. Proof of Proposition 4 Define θ̂ = ψmθ̃ and ψ̃ = ψ
ψm

and rewrite equation (8),

1

ψm
θ̂ − 1 + λ

(
2

J + J̃

) ∫ :∞
1
ψm

θ̂
∗

(
θ̂
∗

ψmz

)β̃1 (
Emax

{
ψmψ̃z − 1

}
− (z − 1)

)
dz
z

+
∫ 1
ψm

θ̂
∗

0

(
θ̂
∗

ψmz

)β2
Emax

{
ψmψ̃z − 1

}
dz
z

 = 0

Let ẑ ≡ ψmz. Then,

1

ψm
θ̂ − 1 + λ

(
2

J + J̃

) ∫ :∞
θ̂
∗

(
θ̂
∗

ẑ

)β̃1 (
Emax

{
ψ̃ẑ − 1, 0

}
− 1

ψm
ẑ + 1

)
dẑ
ẑ

+
∫ θ̂∗

0

(
θ̂
∗

ẑ

)β2
Emax

{
ψ̃ẑ − 1

}
dẑ
ẑ

 = 0

1

ψm

θ̂ − λ( 2

J + J̃

)∫ :∞

θ̂
∗

(
θ̂
∗

ẑ

)β̃1
dẑ

+ λ

(
2

J + J̃

) ∫ :∞
θ̂
∗

(
θ̂
∗

ẑ

)β̃1 (
Emax

{
ψ̃ẑ − 1, 0

}
+ 1
)
dẑ
ẑ

+
∫ θ̂∗

0

(
θ̂
∗

ẑ

)β2
Emax

{
ψ̃ẑ − 1

}
dẑ
ẑ

 = 0

1

ψm
θ̂

(
1− λ 2

J + J̃

1

β̃1 − 1

)
+ λ

(
2

J + J̃

) ∫ :∞
θ̂
∗

(
θ̂
∗

ẑ

)β̃1 (
Emax

{
ψ̃ẑ − 1, 0

}
+ 1
)
dẑ
ẑ

+
∫ θ̂∗

0

(
θ̂
∗

ẑ

)β2
Emax

{
ψ̃ẑ − 1

}
dẑ
ẑ

 = 0

Since 1− λ 2
J+J̃

1
β̃−1
≥ 0, the LHS decreases with ψm.

Changing the dummy of integration to m = z

θ̂
∗ ,

1

ψm
θ̂

(
1− λ 2

J + J̃

1

β̃1 − 1

)
+ λ

(
2

J + J̃

) ∫ :∞
1 m−β̃1

(
Emax

{
ψ̃mθ̂

∗ − 1, 0
}

+ 1
)
dẑ
ẑ

+
∫ 1

0 m
−β2Emax

{
ψ̃mθ̂

∗ − 1
}
dm
m

 = 0

The first derivative wrt θ̂
∗
yields

1

ψm

(
1− λ 2

J + J̃

1

β̃1 − 1

)
+ λ

(
2

J + J̃

) ∫∞
1 m−β̃1+1 dE[max{ψmθ̃∗−1}]

dmθ̃
∗

dm
m

+
∫ 1

0 m
−β2+1 dE[max{ψmθ̃∗−1}]

dmθ̃
∗

dm
m

 > 0.

Hence, the LHS increases with θ̂
∗
. Thus, by the implicit function theorem, dθ̂

∗

dψm
> 0.
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 Firms  Instancies Incursions Re-entries

1997 3,775 9,859 4,081 700 0.257 6,825 6.477 2.335

1998 3,563 9,116 3,522 729 0.290 5,757 -0.392 4.110

1999 3,895 10,425 4,251 1,102 0.275 6,088 1.495 14.111

2000 4,016 11,347 4,535 1,106 0.242 6,955 2.694 2.725

2001 4,347 11,536 4,244 1,175 0.259 7,026 0.618 1.351

2002 4,685 12,042 4,222 1,338 0.273 7,714 5.454 1.677

2003 5,094 13,171 4,836 1,458 0.274 9,091 4.165 -1.057

2004 5,467 14,318 5,139 1,597 0.263 12,809 4.958 -2.820

2005 17,368 6.285 -1.770

2006 23,830 7.529 0.518

2007 28,094 8.518 -3.422

2008 31,018 9.143 -8.233

2009 26,962 1.049 -0.314

Total 34,842 91,814 34,830 9,205 0.266 189,535 64.737

 Notes : Left panel  based on Peruvian customs dataset (World Bank). Fi rs t two columns  of right panel  based on INEI. Real  exchange rate multipl ies  

nominal  exchange rate by U.S. PPI (BLS) and divides  i t by Peruvian CPI (INEI).

Table 1: Descriptive statistics

Firms and entries Macro variables

Number of: Survival 

rate of 

incursions: 

2 years

Total 

exports                
(US$ mi l l .)

Real GDP 

growth 
(annual  

variation, %)

Real 

exchange 

rate                    
(annual  

variation, %)
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μ/σ -0.1 -0.3 -0.5 -0.7 -0.9

Instantaneous P1 0.460 0.382 0.309 0.242 0.184

Partial year effect correction P1 0.473 0.421 0.37 0.322 0.278

Re-entry correction P1 0.709 0.618 0.522 0.425 0.334

Fully-adjusted P1 0.791 0.73 0.664 0.594 0.525

Instantaneous P5 0.412 0.251 0.132 0.059 0.022

Partial year effect correction P5 0.416 0.262 0.145 0.069 0.028

Re-entry correction P5 0.542 0.357 0.201 0.095 0.038

Fully-adjusted P5 0.553 0.376 0.222 0.113 0.049

Table 2: Adjustments of survival probabilities for time aggregation effects

Note: Reported figures  are surviva l  probabi l i ties  s imulated as  described in section 4.2.

Survival probabilities

Fixed parameters

Panel A: One year horizon

Panel B: Five year horizon



51 
 

 

  

µ -0.05 -0.1 -0.15

σ 0.139 0.279 0.418

λ 10 10 10.2

α 6.9 3.7 2.8

P1 0.372 0.357 0.357

P2 0.226 0.213 0.213

P3 0.197 0.182 0.185

P4 0.177 0.166 0.167

P5 0.161 0.15 0.152

P1Re 0.628 0.617 0.627

P2Re 0.463 0.459 0.462

P3Re 0.388 0.386 0.385

P4Re 0.334 0.332 0.332

P5Re 0.294 0.292 0.292

Table 3: Identification

Note: Reported probabi l i tes  are s imulated us ing the 

parameters  speci fied in each column.

Fixed parameters

Predicted survival probabilites

Panel A: Entrants

Panel B: Re-entrants
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µ -0.1

r 0.1

Coefficient Std. Dev.

σ 0.279 0.0005

λ 10.0 0.18

α 3.7 0.04

Model Data

P1 0.361 0.358

P2 0.210 0.266

P3 0.185 0.223

P4 0.169 0.196

P5 0.154 0.177

P1Re 0.607 0.460

P2Re 0.442 0.389

P3Re 0.374 0.354

P4Re 0.324 0.329

P5Re 0.286 0.308

Panel B: Re-entrants

Panel A: Entrants

Table 4: SMM Estimation results

Estimated parameters

Fixed parameters

Survival probabilites
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Coefficient Std. Dev.

μ/σ -0.67 0.002

Model Data

P1 0.594 0.358

P2 0.354 0.266

P3 0.242 0.223

P4 0.176 0.196

P5 0.130 0.177

Panel A: Entrants

Table 5: SMM Estimation results 

(Benchmark model)

Estimated parameter

Survival probabilites
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µ -0.1 -0.1 -0.1 -0.1 -0.1

σ 0.279 0.279 0.279 0.279 0.279

λ 10 10 10 10 10

α 2.3 2.8 3.7 5.6 9.4

Pareto standard deviation 2.14 1.07 0.54 0.27 0.13

Normalized standard deviation 4 2 1 1/2 1/4

P1 0.262 0.286 0.357 0.493 0.620

P2 0.090 0.123 0.213 0.348 0.455

P3 0.069 0.104 0.182 0.303 0.386

P4 0.061 0.095 0.166 0.263 0.332

P5 0.056 0.088 0.150 0.233 0.290

P1Re 0.510 0.570 0.617 0.658 0.677

P2Re 0.353 0.403 0.459 0.487 0.508

P3Re 0.286 0.331 0.386 0.401 0.423

P4Re 0.250 0.282 0.332 0.345 0.356

P5Re 0.220 0.245 0.292 0.302 0.308

Table 6: Effect of alpha on survival probabilities

Fixed parameters

Panel A: Re-entrants

Note: Surviva l  probabi l i ties  for entrants  and re-entrants  are s imulated us ing the parameters  speci fied in 

each column.

Survival probabilities

Panel A: Entrants
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(1) (2) (3) (4)

H1 0.358*** 0.361*** 0.358*** 0.360***

(0.00257) (0.0886) (0.00257) (0.0744)

H2 0.266*** 0.263*** 0.266*** 0.262***

(0.00237) (0.0885) (0.00237) (0.0744)

H3 0.223*** 0.222** 0.223*** 0.218***

(0.00223) (0.0885) (0.00223) (0.0745)

H4 0.195*** 0.195** 0.195*** 0.188**

(0.00212) (0.0885) (0.00212) (0.0745)

H5 0.177*** 0.178** 0.177*** 0.169**

(0.00204) (0.0886) (0.00204) (0.0745)

H1Re 0.101*** 0.0899***

(0.00578) (0.00579)

H2Re 0.123*** 0.113***

(0.00564) (0.00565)

H3Re 0.131*** 0.121***

(0.00554) (0.00554)

H4Re 0.133*** 0.122***

(0.00550) (0.00551)

H5Re 0.131*** 0.121***

(0.00542) (0.00544)

Sector FE no yes no yes

Destination FE no yes no yes

Year FE no yes no yes

Observations 174,150 174,150 220,175 220,175

R-squared 0.261 0.287 0.294 0.315

Table A.1: Facts 1 and 2 controlling for composition

Entrants Re-entrants

Clustered errors by firm-destination in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Dependent variable: Survival status
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(1) (2) (3) (4) (5) (6) (7) (8)

H1 0.394*** 0.399*** 0.400*** 0.406*** 0.394*** 0.400*** 0.380*** 0.386***

(0.00353) (0.00428) (0.0165) (0.0167) (0.00353) (0.00415) (0.0570) (0.0570)

H2 0.300*** 0.304*** 0.302*** 0.306*** 0.300*** 0.305*** 0.281*** 0.285***

(0.00342) (0.00402) (0.0165) (0.0166) (0.00342) (0.00393) (0.0569) (0.0570)

H3 0.258*** 0.255*** 0.261*** 0.258*** 0.258*** 0.255*** 0.236*** 0.233***

(0.00334) (0.00381) (0.0166) (0.0167) (0.00334) (0.00373) (0.0569) (0.0569)

H4 0.230*** 0.229*** 0.233*** 0.232*** 0.230*** 0.229*** 0.207*** 0.205***

(0.00327) (0.00367) (0.0166) (0.0167) (0.00327) (0.00358) (0.0569) (0.0569)

H5 0.211*** 0.205*** 0.215*** 0.209*** 0.211*** 0.204*** 0.187*** 0.179***

(0.00321) (0.00353) (0.0168) (0.0169) (0.00321) (0.00344) (0.0568) (0.0568)

H1Re 0.0901*** 0.0896*** 0.0860*** 0.0854***

(0.00771) (0.00772) (0.00772) (0.00773)

H2Re 0.111*** 0.111*** 0.108*** 0.108***

(0.00767) (0.00768) (0.00767) (0.00769)

H3Re 0.119*** 0.120*** 0.116*** 0.117***

(0.00759) (0.00759) (0.00760) (0.00760)

H4Re 0.121*** 0.121*** 0.118*** 0.118***

(0.00760) (0.00759) (0.00760) (0.00759)

H5Re 0.120*** 0.121*** 0.117*** 0.118***

(0.00750) (0.00748) (0.00751) (0.00749)

Diff -0.0547*** -0.0634*** -0.0547*** -0.0644***

(0.00375) (0.00388) (0.00375) (0.00387)

H1*Diff -0.0635*** -0.0730*** -0.0645*** -0.0746***

(0.00538) (0.00547) (0.00513) (0.00521)

H2*Diff -0.0610*** -0.0695*** -0.0621*** -0.0717***

(0.00499) (0.00509) (0.00482) (0.00491)

H3*Diff -0.0508*** -0.0593*** -0.0507*** -0.0602***

(0.00472) (0.00484) (0.00457) (0.00468)

H4*Diff -0.0526*** -0.0615*** -0.0531*** -0.0630***

(0.00452) (0.00465) (0.00437) (0.00449)

H5*Diff -0.0454*** -0.0538*** -0.0429*** -0.0523***

(0.00434) (0.00447) (0.00420) (0.00432)

Re*Diff 0.0157* 0.0157* 0.0175** 0.0175**

(0.00869) (0.00869) (0.00866) (0.00866)

Destination FE no no yes yes no no yes yes

Year FE no no yes yes no no yes yes

Observations 170,135 170,135 170,135 170,135 215,045 215,045 215,045 215,045

R-squared 0.265 0.265 0.272 0.272 0.297 0.297 0.303 0.303

Table A.2: Effect of  type of product on survival

Clustered errors by firm-destination in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Entrants Re-entrants

Dependent variable: Survival status
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(1) (2) (3) (4)

H1 0.322*** 0.423*** 0.322*** 0.426***
(0.0333) (0.0473) (0.0334) (0.0474)

H2 0.229*** 0.159*** 0.224*** 0.151***
(0.0333) (0.0437) (0.0334) (0.0439)

H3 0.186*** 0.184*** 0.183*** 0.180***
(0.0333) (0.0416) (0.0334) (0.0417)

H4 0.158*** 0.144*** 0.155*** 0.141***
(0.0332) (0.0399) (0.0333) (0.0400)

H5 0.139*** 0.124*** 0.137*** 0.123***
(0.0332) (0.0386) (0.0334) (0.0387)

Diff 0.234*** 0.232***
(0.0414) (0.0415)

ldist*Diff -0.0254*** -0.0253***
(0.00289) (0.00289)

ldist*Homog 0.00836** 0.00828**
(0.00377) (0.00377)

H1*Diff 0.205*** 0.199***
(0.0596) (0.0596)

H2*Diff 0.295*** 0.298***
(0.0549) (0.0549)

H3*Diff 0.196*** 0.196***
(0.0521) (0.0521)

H4*Diff 0.200*** 0.199***
(0.0498) (0.0498)

H5*Diff 0.272*** 0.269***
(0.0482) (0.0482)

H1*ldist*Diff -0.0343*** -0.0340***
(0.00424) (0.00424)

H2*ldist*Diff -0.0246*** -0.0247***
(0.00387) (0.00387)

H3*ldist*Diff -0.0206*** -0.0206***
(0.00366) (0.00367)

H4*ldist*Diff -0.0197*** -0.0197***
(0.00347) (0.00347)

H5*ldist*Diff -0.0277*** -0.0275***
(0.00336) (0.00336)

H1*ldist*Homog -0.00244 -0.00284
(0.00536) (0.00536)

H2*ldist*Homog 0.0168*** 0.0170***
(0.00496) (0.00497)

H3*ldist*Homog 0.00824* 0.00825*
(0.00472) (0.00472)

H4*ldist*Homog 0.00984** 0.00974**
(0.00454) (0.00454)

H5*ldist*Homog 0.00937** 0.00920**
(0.00438) (0.00439)

Year FE no no yes yes

Observations 168,315 168,315 168,315 168,315
R-squared 0.267 0.268 0.268 0.268

Table A.3: Effect of distance on survival

Clustered errors by firm-destination in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Dependent variable: Survival status
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(1) (2) (3) (4)

H1 0.548*** 0.628*** 0.549*** 0.629***
(0.0249) (0.0363) (0.0262) (0.0372)

H2 0.459*** 0.454*** 0.459*** 0.453***
(0.0248) (0.0332) (0.0260) (0.0340)

H3 0.422*** 0.380*** 0.421*** 0.379***
(0.0248) (0.0314) (0.0259) (0.0321)

H4 0.394*** 0.344*** 0.390*** 0.340***
(0.0248) (0.0297) (0.0257) (0.0305)

H5 0.379*** 0.396*** 0.374*** 0.390***
(0.0248) (0.0289) (0.0255) (0.0295)

Re 0.206*** 0.204***
(0.0624) (0.0625)

ldist -0.0254*** -0.0254***
(0.00289) (0.00289)

ldist*Re -0.00917 -0.00902
(0.00728) (0.00729)

H1Re 0.152* 0.150*
(0.0843) (0.0844)

H2Re 0.115 0.113
(0.0830) (0.0830)

H3Re 0.222*** 0.221***
(0.0811) (0.0811)

H4Re 0.247*** 0.243***
(0.0808) (0.0808)

H5Re 0.294*** 0.294***
(0.0801) (0.0801)

H1*ldist -0.0343*** -0.0342***
(0.00424) (0.00424)

H2*ldist -0.0246*** -0.0246***
(0.00387) (0.00387)

H3*ldist -0.0206*** -0.0206***
(0.00366) (0.00367)

H4*ldist -0.0197*** -0.0198***
(0.00347) (0.00347)

H5*ldist -0.0277*** -0.0276***
(0.00336) (0.00336)

H1Re*ldist -0.00578 -0.00560
(0.00986) (0.00987)

H2Re *ldist 0.00107 0.00121
(0.00972) (0.00972)

H3Re *ldist -0.0102 -0.0101
(0.00948) (0.00948)

H4Re *ldist -0.0130 -0.0126
(0.00944) (0.00944)

H5Re *ldist -0.0179* -0.0180*
(0.00933) (0.00933)

Year FE no no yes yes

Observations 128,885 128,885 128,885 128,885
R-squared 0.277 0.277 0.277 0.277

Table A.4: Effect of distance on differentiated survival

Clustered errors by firm-destination in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Dependent variable: Survival status
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Figure 1: The exporter survival profile 
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Figure 2: Survival profile for first-time entrants and re-entrants 
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Figure 3: Survival profiles predicted by the model 
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Figure 4: Survival profile by type of product 
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Figure 5: Survival profile by type of product and type of incursion  
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Figure 6.a: Survival profile by distance, differentiated goods 
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Figure 6.b: Survival profile by distance, homogeneous goods 

Short distance Medium distance Long distance



63 
 

 

 

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

1 2 3 4 5

Figure 7: Survival profile by distance and type of incursion, 
differentiated goods 
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