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1 Introduction

This work is focused on the study of macro level technological change dynamics exploiting
available long trend productivity data. The main objective is to implement the Biased
technological change concept (Antonelli and Quatraro, 2014) in order to explore the adap-
tive dynamics that takes place when technological shocks occur.

Particularly, the interest will be focused on the exploration of the determinants of both
the Biased Technological Change direction and intensity. Additionally, there are a number
of linkages that are worth to explore, such as the connection between the bias intensity (as
a measure of adaptive practices) and the patenting activities (as proxy of general purpose
technological shifts). Furthermore, the relation of the bias with factor output elasticities as
determinants of coherence in the adaptation processes will be estimated and discussed in
order to address the mechanisms underlying diverse specialization patterns and the path-
dependent nature of the local systems.

The analysis will be carried using a novel database comprehending the period 1973-
2005 and 13 developed countries. The evidence will be treated in two sets of econometric
models, a block of five fixed effects models to address the directionality of the bias and a
set of five System-GMM models to explore the determinants of its intensity.

The biased technological change concept is focused on the study of the interaction be-
tween factors’ relative abundance and their contribution to the production output, making
use of the information provided by the factor output elasticities and the inter-temporal
relative factor endowments. As so, it allows to measure the impact of localized, adaptive
dynamics that take place when a technological shock occur.
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The estimations of Biased Technological change allows to incorporate in the long-trend
productivity analysis the effects derived from general-purpose technological shocks and lo-
cal adaptive strategies. This imply a contribution to the macro-level productivity analysis
and opens the possibility to elaborate more sensible and explanatory indicators from cur-
rently existent data.

The next section will discuss the conceptual milestones involved in the localized, di-
rected and biased technological change followed by the theoretical derivation of the bias.
Section 4 will describe the empirical strategy, data used to carry the analysis and will
address the main stylized facts that the data shows. Section 5 is intended to address the
empirical aspects and previous findings related to the bias and it’s determinants. Section
6 will present the specification of the econometric models and will discuss the main results
derived from the regressions to explain the bias determinants. Finally, Section 7 expose
the implications of the evidence gathered and summarize the final remarks of the paper.
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2 The analytical framework

Technological change dynamics have been deeply studied during the last decades, making
the topic one of the most relevant at macro and micro level, particularly within the field
of economics of innovation. The constitution of these studies, departing from the seminal
work of Solow (1957), showed productivity as one of the central elements able to help us
understand technical progress trends.

The first approaches targeting productivity estimations (Solow, 1957; Douglas, 1985;
Dasgupta and Stiglitz, 1976) relayed on the idea that simplified production functions were
able to capture the interactions amongst factors and, at some point, to predict future out-
put levels. By estimating inputs and outputs according to these specific functional forms
the empirical values showed differences with respect to the theoretical models. Amongst
the reasons able to explain these divergences, the introduction of the concept of productiv-
ity variations due to technological change represent one of the most prolific lines of research
until our days.

Technological change can be measured in different ways, one of the most regularly used
involves productivity shifts through total factor productivity estimations. The most rele-
vant estimations on total factor productivity were built upon a Cobb-Douglas production
function with constant returns to scales (Solow, 1957). The assumptions behind that for-
mulation were historically criticized by a portion of the literature for considering them too
simplistic in different aspects. In spite of the criticism, this indicator is, still, one of most
diffused to understand productivity differences across countries and time.

Moreover, it is important to underline that in addition to the standard assumptions
regarding a Cobb-Douglas based production function, there are two additional premises
that affect drastically the interpretation of productivity estimations. The first of them is
the solowian proposition that address technological change as neutral. The second, the
fact that the output elasticities tend to be homogeneous across countries and that are fixed
over time.

The main issues this work intend to present for their discussion are based on the re-
laxation of these two effects. On the one hand, the neutral feature of technological change
can be, indeed, a possible scenario on the real world. This, however, doesn’t imply that
neutrality is the generalized case that characterize every economic system. On the other
hand, is not likely to think that output elasticities are fixed at certain levels for long peri-
ods of time. In other words, this paper challenges the idea that elasticities doesn’t change
dynamically from one period to another. Similarly, if output elasticities represent a local
feature of an economy, is arguable that they present identical values for different economic
systems. So, elasticities may vary from one context to another. The relaxation of these
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two issues, neutrality and output elasticities, are not only the very origin of the Biased
Technological Change concept, but also the root for the arguments on the adaptive and
local nature of the technological change.

Given a technological shock manifested through the appearance of a new general-
purpose techniques, production processes of different economies may be subject to al-
terations. If these economies are heterogeneous in the sense that each of them present
particular endowments and factoral characteristics, then technology shocks are not ex-
pected to be neutral in the production systems affected (Helpman, 1998; Antonelli, 2006).
This type of heterogeneity imply that the each shock have an specific effect in every con-
text in which is introduced and that each production system may react following different
strategies.

Moreover, considering shocks to be dynamic over time, the adaptation patterns become
specific of each context. In concordance with Habbakuk (1962) and David (1975), the local
characteristics determined by factor’s abundance and cumulative experience can lead to in-
novative adaptations in response to exogenous shocks. Each context adapt itself differently
according to its experience and previous production practices, allowing the deployment of
two parallel effects: the one that make each context different from others, and the one
that limit the adaptive possibilities within a restricted range of techniques tightly related
to previous experiences (Antonelli, 1995).

General-purpose technology shocks and local adaptations are two processes that are
different in nature but strongly related. The first is oriented to modify the production
ways, replacing the exploitation of resources based on old techniques to implement new
ones and spread them in a range of related technological classes (Keller, 2002). This kind
of processes are difficult to measure, but generally it is assumed that patents creation and
citation represent a good approximation of how general a technology is and how much it is
diffused in certain economic systems. Local adaptations, instead, are based on particular
reactions that economic systems carry given a general-purpose technological shock. These
adaptations are embedded in particular contexts and implemented by labor force that learn
from each response they build upon every external shock. The Labor-skills biased tech-
nological change literature (Acemoglu, 1998; Acemoglu, 2002) recognize these elements in
the relation that workers show with the production levels and analyze the elasticities of
different types of workers in order to determine the diversity of dynamics underlying the
adaptive behavior.

Hence, two broad types of technological change can be identified from the literature.
On the one hand, there are innovations that affect the system level, general-purpose tech-
nologies that modify the ways in which the system interact and produce. On the other
hand, the new products and processes that respond to a local need, particularly focused on
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the adaptation and imitation able to provide particular opportunities in an specific con-
text. It is worth to mention that general technologies, in spite of their general diffusion, are
produced from a local context too, and have their root in creative adaptation (Antonelli,
2004; Antonelli and Fassio 2014) and imitation dynamics dependent on a particular local
experience.

The interaction between general technologies and local adaptation is one additional
component of the relation. Local adaptation in the form of re-allocation of resources takes
place not only in the third-party economies that interpret the technology as a shock, but
also in the context that is source of the innovation.

A particular situation takes place if technology is not neutral1. Given a technologi-
cal shock, two types of effect should be recognized depending on the inclusion or not of
the output elasticities modifications derived from the use of novel technologies. The first
effect is focused on the pure shift of the isoquants, as if there is no impact of the shock
on the factor’s output elasticities; the second is defined by the isolated consequence on
the later. This measures the movements of the slope over the same isoquant due to the
shock. Antonelli and Quatraro (2014) carry a comprehensive explanation of these relation
and develop an empirical proposal to calculate these types of technological change with
currently available data.

The technological shocks that generate shifts on the isoquants are those that posses a
general impact on the economic activities. This effect is the one that Solow’s productiv-
ity measurement captures if the technology is neutral. As mentioned above, in order to
identify this process without assuming neutrality, a total effect have to be calculated based
on fixed values of the output elasticities. The contingent adaptations take place at the
local level and are reflected as a change on the factors use an their the output elasticities
relation. This is the bias effect (Antonelli and Quatraro, 2010, 2014), which technically
is the difference between the technological change calculated with fixed output elasticities
and the Solow’s traditional indicator.

A decomposition of the technological change in two effects, the movement of the iso-
quants and the bias effect derived from the output elasticities transformations is particu-
larly useful for the setup presented in this work. Economies specialized on the creation of
general technologies will impact on the shift of the production functions, while economies
that react to new technologies, interpreting them as a shock, are expected to incur in con-

1Classical productivity measurements have been able to identify technological shifts calculating the
empirical differences between the theoretical predictions and the actual growth rates of the economies.
This type of indicator is based on Solow (1957) and reflects technological change as a particular situation:
if the technology is neutral, the residual derived from the theoretical and empirical estimations is expected
to identify the shifts on the isoquants towards the origin.
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tingent innovations switching their allocations to a new combinations that favor the new
context (Antonelli, 2004).

3 The Technological Change Decomposition

The TFP calculation implemented in this paper is one of the most direct ways to approach
the productivity problem, consisting in a trans-log transformation of the Cobb-Douglas pro-
duction function (Christensen, Jorgerson and Law, 1973). Departing from this standard
setup, the formalization becomes log(Asi,s,t) = log(Yi,s,t)− αi,s,tlog(Ki,s,t)− βi,s,tlog(Li,s,t)
with i and t representing country and time variations, respectively. The elements con-
sidered in the function are the traditional ones, where Y stands for output (GDP), L for
labor, K for capital, α and β for output elasticities and A as the inter-temporal residual
between theoretical and empirical values.

The following exercises consider output elasticities as a result derived from actual data,
hence this work is not concentrated on the econometric estimation of this particular item2.
Making use of available available data, the elasticities are calculated following the stan-
dard setup βi,s,t = PLL

Y =
wi,s,t.Li,s,t

Yi,s,t
, where w represents wages of the labor force (i.e. total

compensations over total persons engaged) and β is the equivalence between the marginal
productivity of labor and factor’s prices.

As was mentioned above, if technological shocks affect the isoquants and the out-
put elasticities (OE) of each production factor, the necessity to formulate the classic
Solow’s TFP view raises. This is so because traditional TFP isn’t sensible enough to
identify both, neutral shifts and OE changes, due to the holding of the neutrality as-
sumption. The Bias Technological Change approach (Antonelli and Quatraro, 2010, 2014)
addresses this issue by using a a two-step index. The first step isolate the effect of tech-
nology changes over output elasticities, and will be denominated Technological Change
with Fixed Output Elasticities (Afoe). This index measures technological change as if OE
are constant over time, accounting for productivity variations that involve both, neutral
shifts and factors’ output elasticities alterations3. The formal trans-log expression of it
is log(Afoei,s,tn

) = log(Yi,s,tn) − αi,s,t0 log(Ki,s,tn) − βi,s,t0 log(Li,s,tn) noting that t is fixed at
t = 0 (or t0). The main element to take into account is that α and β are now invariant
over time. This particular feature will allow to isolate the elasticity variations from the

2Although there are extensive debates regarding this aspect, the estimation of the elasticities concerns
other kind of research questions (and specially other assumptions). The works of e.g. Miller (2008) and De
Loecker (2009) illustrate the main elements of this discussion.

3Indeed, Antonelli and Quatraro (2010, 2014) define the same indicator as the Total Output Elasticty
index.
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main technological shifts effect.

The Bias component of the Technological Change consists in the calculation of the
residual between the fixed output elasticities technological change Afoe and the traditional
index As. The conceptual reason to do this is that the Biased Technological Change
should account exclusively for the transformations in the factor’s output elasticities. If
Afoe measures the total effect (neutral and elasticities variations, together) and Solow’s
TFP measures only the changes due to neutral technology variations, then the difference
between the first and the second turns to be the isolated effect of the OE. Hence, the
Biased Technological Change (BTC) is the difference between the two indexes, which can

be expressed as (Afoei,s,tn
)− (Asi,s,tn) = (ABiasi,s,tn

).

Different states of the Bias can be outlined. If the BTC is equal to zero, then tech-
nological change is neutral, so the entire effect of technology shocks is measured by the
traditional Solow’s TFP. If the bias is different from zero the neutrality assumption doesn’t
hold.

3.1 Biased Technological Change and the Localized Adaptive Processes

Different states of the Bias can be outlined, each of them determine the interpretation of
this indicator. From a static point of view, the BTC offers information about the economy:
if it is equal to zero, then such structure doesn’t react to output elasticities alterations.
This can only happens due to particular features of the system such as similar output
elasticities or factoral endowments, and represent a theoretical case that hardly encounter
an empirical manifestation. This case will be characterized as a neutral structure because
of the spurious effect that productivity changes may have on the system’s composition. If
the bias is different from zero, additional information on the structural characteristics of
the economy can be collected.

The Biased Technological Change indicator contain it’s strongest explanatory feature
within it’s sign. A positive BTC can be interpreted as a coherent relation between the fac-
tor’s ratio and their output elasticities. Negative values of the bias represent the opposite,
endowments and output elasticities going in different directions, obtaining a non-coherent
technological structure . The static states of the BTC can be summarized as:
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BTC = 0, Neutral Structure ⇒ β = α or L = K

BTC > 0, Coherent Structure ⇒ β > α and L > K

⇒ β < α and L < K

BTC > 0, Non− Coherent Structure ⇒ β < α and L > K

⇒ β > α and L < K

From a dynamic point of view, the BTC offers allows to analyze trends on the adaptive
processes within an economy, complementing the information compiled through the tradi-
tional TFP indicator. It BTC is equal to zero, then the solowian neutrality assumptions
hold and technological change affect factor output elasticities in the same proportions. In-
stead, if the bias differ from zero, new information on the adaptive mechanisms can be
collected. According to this framework, given an L intensive region (so, where Li > Ki)
and a variation over time ∆, the dynamic instances of the bias can be summarized as:

∆BTC = 0, Neutral Adaptation ⇒ ∆β = ∆α = 0

∆BTC > 0, Coherent Adaptation ⇒ ∆ L
K > 0 and ∆β > 0

⇒ ∆ L
K < 0 and ∆β < 0

∆BTC < 0, Non Coherent Adaptation ⇒ ∆ L
K > 0 and ∆β < 0

⇒ ∆ L
K < 0 and ∆β > 0

A positive Bias imply a concordance between the relative factor abundance and the
factor output elasticities (Antonelli, 2010). Hence, shifts of output elasticities towards a
relatively abundant resource will be expressed as a BTC greater than zero4 . When the
specialization of a region is oriented to the factor that shows decreasing output elasticities,
even if it is the most abundant on the region, the bias will be negative. So, if the local abun-
dant resources are not evolving in the same direction than the output elasticities favored
by the technological shock, then the specialization tends to be non-coherent (according to
Antonelli and Quatraro, 2014).

As said, a BTC associated with a zero-value reflects the empirical manifestation of the
neutrality assumption. In this case, the lack of bias connote that Solow’s framework have
a correlation with the empirical evidence. When the Bias differs from zero, then techno-

4Equivalently, the bias will be positive in cases in which the scarce resource of an economy shows
diminishing elasticities.
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logical change is not neutral and can be interpreted in different ways.

On the one hand, a positive Bias may imply a concordance between the relative factor
abundance and the factor output elasticities (Antonelli, 2010). Hence, shifts of output
elasticities towards a relatively abundant resource will be expressed as a BTC greater than
zero5 . On the other hand, when the specialization of a region is oriented to the factor
showing decreasing output elasticities, the bias will be negative. So, if the local abundant
resources are not evolving in the same direction than the output elasticities favored by
the technological shock, then the specialization tends to be non-coherent (according to
Antonelli and Quatraro, 2014).

Output elasticities are specific of each context, and their nature is attached to localized
factors (e.g. labor and capital) that evolve over time augmenting the specific evolutionary
trend of each particular context (region, country, etc.). If some variation exist within these
indicators, then technological change is not neutral and the local effect plays a role. In
this sense, locally abundant goods and technological trajectories matter. These issues are
the focus of this work, and their trends and determinants will be explored in the following
sections.

The segmentation of the technological change in distinctive effects, the shift due to the
neutral changes and the bias, due to the local adaptation, offers an interesting insight on
productivity analysis. It allows to explore the determinants and the relations between two
types of innovation and how they behave over time, as well as differentiate and explain
specific technological trajectories based on empirical data.

4 Methodology and Data Description

Following the presented framework, a number of key variables including the Bias Techno-
logical Change were calculated for 13 countries6 within the period 1973-2005. The sources
utilized to construct the dataset are the KLEMS database7 for the raw indicators used to
obtain the TFP and Biased Technological Change estimations; the World Development In-
dicators (WDI8) for patents and other control variables; last, the Groningen Productivity
level database (GGDC9) for the relative pricing adjustments at sector level (Inklaar and

5Equivalently, the bias will be positive in cases in which the scarce resource of an economy shows
diminishing elasticities.

6The countries are Australia, Belgium, Denmark, Spain, Finland, France, Germany, Italy, Japan, Korea,
Netherlands, UK and US.

7http://www.euklems.net
8http://data.worldbank.org/data-catalog/world-development-indicators
9http://www.rug.nl/research/ggdc/data/ggdc-productivity-level-database
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Timmer, 2006), used to adjust the Gross Output and, indirectly, the wages10. Combining
these sources, a strongly balanced panel data with specific information on the selected
countries was built.

For some of the exercises of the next section, sector level data on TFP is arranged in
4 groups according to the OECD Technological Instensity Classification (ISIC, Rev. 311,
OECD, 2011). Each sector is classified according to this categories, although due to re-
strictions on data availability (mainly before 1990) the matching of each case across time
was partially accomplished. In this sense, the grading from High to Low tech is merely
descriptive and oriented to involve control’s variability with respect to the Bias within the
econometric models.

As was mentioned in Section 3, the TFP indicator is constructed as a normalized
index that equals a unit at the beginning of a given period (1973 in this case), such that:

log(Ast,i) = log(Y t,i)− αt,ilog(Kt,i)− βt,ilog(Lt,i) (1)

TFPt,i = 1 + ∆log(Asi,t) = 1 +
log(Asi,t)− log(Asi,t−1)

log(Asi,t−1)
(2)

∀i, ∀t > 1973, where TFPt,i = 1 if t = 1973

Equation (1) and (2) provide the specification of the TFP derivation12. The Biased
Technological Change indicator, hence, is the difference between As and an estimation of
the TFP with fixed factor output elasticities over time Afoe. In effect, Afoe is calculated
considering that αt,i and βt,i are constant for the period13. The bias index is expressed as
the difference between the total effect of technological change and the one based on the
neutrality assumption, as Afoe −As = Abias.

In order to present some basic indicators derived from the data and to address the
dynamics of the key variables in a summarized way, the time span of the sample is split
in three periods: 1973-1985, 1986-1995 and 1995-2005. Table 1 shows the five indicators
that will conform the core of the analysis: income per capita (Y/L), TFP average growth
for each period, the Biased Technological Change (BTC) and the Labor Output Elasticity

10The prices are normalized at sector level using the Parity Purchase Power pricing of 2005.
11Further information at http://unstats.un.org/unsd/cr/registry/regcst.asp?Cl=2
12TFP and other indicators are also calculated at the sector level for some of the econometric estimations

of the next section. So, for each country i there may be a set of sectors s = {1, 4} with their specific TFP
proportions.

13The values of the fist year α1973,i and β1973,i are extended ∀αt,i, βt,i
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(LOE, or β on both, Solow’s (1957) and Antonelli and Quatraro’s (2014) specifications)
values and growth rates.

Table 1: Key Variables by Period, 13 Countries Average.

Periods Y/L TFP Growth BTC LOE LOE Growth

1973-1985 mean 3.225237 .0927851 .0114584 .5650496 .0011271

std. dev. 3.859594 .0866665 .0199014 .0869974 .0180777

Range (max-min) 25.55491 .7024555 .1108698 .4127587 .1381516

Cv (mean/sd) 1.196685 .9340562 1.736836 .1539641 16.03847

1986-1995 mean 4.13493 .0414461 .0059806 .5585475 .000044

std. dev. 6.144102 .0611039 .0296117 .05847 .0141417

Range (max-min) 36.86533 .3461146 .1329368 .2678231 .1023288

Cv (mean/sd) 1.485903 1.474297 4.951284 .1046823 321.4473

1996-2005 mean 3.924263 .023493 .0077456 .5592808 .0006108

std. dev. 7.13458 .0495006 .0307563 .0575267 .0103427

Range (max-min) 53.43374 .3399501 .1308643 .2616257 .0688759

Cv (mean/sd) 1.818069 2.107036 3.970827 .1028583 16.93397

1973-2005 mean 3.727961 .0550879 .0086734 .5613312 .0006273

std. dev. 5.768852 .0750518 .0266531 .0707656 .0147538

Range (max-min) 53.43374 .7024555 .1421844 .4240237 .1381516

Cv (mean/sd) 1.547455 1.362402 3.072979 .1260675 23.51988

Source: Own Elaboration based on KLEMS, WDI and GGDC databases. Y/L are in millions of PPP U$S;
also LOE is calculated using yearly compensations normalized to U$S PPP for 2005, together with GDP
and Labour Force as quantity of Engaged Personnel. See Technological Change Decomposition subsection
for further detail on LOE construction.

Table 1 shows that, during the time window considered there is in an increasing dy-
namic of the Income per Capita (Y/L) considering the average of the 13 countries of the
sample. The mean income per capita for 1973-2005 is 3.72 millions of U$S PPP. This
average is higher than the values for 1973-1985 (3.22) but lower than the two most recent
time intervals. The peak of Y/L was achieved during the years 1986-1995, 0,21 units higher
than in the most recent period.

The TFP Growth Rate is an index that considers the average yearly differences for
each of the three intervals. The sample’s TFP growth is decreasing over time suggesting
a slow-down dynamic. For the entire period the TFP growth is slightly higher than .05
percentage points, with the most important growth during the period that start in the
seventies (of .09).

The Bias Technological Change index show in average values near zero for the entire
time window (.009) with the lowest value in the interval 1986-1995 and the highest during
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the years 1973-1985. Despite this aggregate trend, regional heterogeneity show figures that
suggest that the bias does not behave homogeneously from country to country. From their
side, labor output elasticities surrounds the .56 points and, as the bias, are notably stable
over the last 30 years, with average variations of .0006 (this is the entire period LOE
Growth).

Table 2: TFP and Income per capita by country and period

Period 1973-1985 Period 1986-1995 Period 1995-2005

TFP Index Y/L TFP Index Y/L TFP Index Y/L

Australia 1.578434 86.42334 1.501543 62.61677 1.21056 25.83666

Belgium 1.411428 72.13943 1.344253 50.91661 1.15923 24.49079

Denmark 1.332776 423.9943 1.288689 300.4703 1.134518 138.8483

Spain 2.218234 45.03414 2.076972 30.34919 1.462146 9.391023

Finland 1.955864 62.95258 1.791274 38.59437 1.378104 15.4768

France 1.440428 59.60337 1.395652 47.65792 1.162934 21.05193

Germany 1.280618 54.8773 1.215992 40.47454 1.080087 23.79358

Italy 2.171076 61.42938 1.9830 37.80574 1.422708 11.07388

Japan 1.046568 85.75852 1.085054 83.40566 1.054056 53.97445

Korea 1.717608 41.84095 1.5613 175.0383 1.274825 43.76594

Netherlands 1.289054 52.51111 1.216983 39.4917 1.11384 27.11373

U.K. 2.065573 37.05063 1.902748 23.41537 1.35645 8.089779

United States 1.326672 76.34059 1.250145 52.5932 1.107642 29.29434

Source: Own Elaboration based on KLEMS, WDI and GGDC databases

Table 2 show how TFP and Income per-capita evolved in the past decades. In gen-
eral, a downward trend can be observed in most of the countries of the sample when the
time dynamics are observed. This trends, however do not behave in an homogeneous way.
Particularly, within the group of developed countries considered14 Spain shows one of the
most critical downward tendencies, together with Italy and UK passing from TFP values
higher than 2 in the seventies to figures surrounding a unit for the period 1995-2005. The
highest TFP levels for the last period, although, belong exactly to these three countries,
manifesting a productivity slow down pattern trend (such as the ideas addressed in Ace-
moglu et. al., 2014).

Income per-capita is a raw indicator that determines the production level of an econ-
omy according to its dimension. Particularly it is able to address in a very approximated
fashion how rich a country is (disregarding the distributive aspects that can obviously af-
fect the overall economic performance and sustainability) and how many resources it has.

14In fact, the presence of Korea in this group and it’s denomination of developed country might be
challenged by a part of the literature. In any sense, Korea have shown substantial progress in several
aspects of their economic performance and, if not developed, can be taken into account as an advanced-
developing country and can be contrasted with the rest of the panel.
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Per-capita income levels (GDP over Labor force) showed in Table 2 detail a decreasing
trend, similar to the one observed in the TFP. With exception of Korea, that reached an
average peak during the period 1986-1995 and denotes improvements over time, the rest
of the countries of the panel evidence a decay in this variable. The highest levels for Y/L
in the most recent years (1995-2005) are achieved by Denmark (138.8), Japan (53.9) and
Korea (43.8). The ranking doesn’t show radical variations over the years, maintaining
Denmark and Japan on the first three positions with Australia in 1973-1985 and Korea
during the average peak of middle eighties to middle nineties.

Table 3 shows the country level detail for the Biased Technological Change and the
Labor Output Elasticities (LOE, or β according to the previous notation) within the three
time periods. As said, the BTC indicator should be null if technological change is neutral.
Although this condition seems to hold in the aggregated level (see Table 1), the empirical
calculations show that this indicator diverge from zero in major or minor degree for all the
considered countries. During the time span we can observe different trends per country,
oscillations from positive to negative values, recurrent differences from zero-values and, of
course, fluctuations over time of the BTC.

Table 3: Biased Technological Change and Labor output elasticities by country and
period

Period 1973-1985 Period 1986-1995 Period 1995-2005

BTC Index LOE BTC Index LOE BTC Index LOE

Australia .0204963 .5353162 -.0257552 .5368392 -.0289471 .5974367

Belgium .0327998 .5558003 .0106327 .5573222 .0148456 .5787216

Denmark .0223845 .6486163 .0253358 .6456023 .0233783 .6444869

Spain .0130055 .5306762 .0140225 .4974126 .0267826 .515945

Finland -.0135068 .5416538 -.0122533 .587758 -.0607389 .5796584

France .0262961 .6116759 -.0192421 .5924944 -.0174041 .5979054

Germany .0118071 .6072135 -.0116291 .6197691 -.0388847 .6342067

Italy -.0168927 .4458515 -.0666175 .4862166 -.1100622 .529206

Japan .0546669 .5198265 .0759484 .4874466 .0624327 .4409441

Korea .0426432 .4864727 .1113603 .4732701 .1084194 .355302

Netherlands .0002825 .5978549 -.038867 .5938779 -.0410042 .6371915

U.K. .0167347 .6239046 -.0340608 .6082837 -.039749 .6496711

United States -.0185839 .5657875 -.0084818 .5748247 -.0036969 .5849698

Source: Own Elaboration based on KLEMS, WDI and GGDC databases

During the first period (1973-1985) the amount of countries with a bias below zero is
lower than in the other two. The three countries (Finland, Italy and US) with a negative
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bias in that years remain in the same situation for the other time intervals. At the same
time, five countries show a positive bias for the whole time window (Belgium, Denmark,
Spain, Japan and Korea). It is worth to note that the cross-country differences manifested
in the BTC dispersion increases when comparing the first period to the most recent ones. In
the last two periods the country-to-country comparison show more dispersion having Italy
a minimum value of -.11 and Korea a maximum of .10 during 1996-2005. In the interval
1973-1985 the extremes are -.018 (U.S.) and .05 (Japan), respectively. During the mid-
dle eighties until the half of the nineties the extremes are -.025 (Australia) and .11 (Korea).

Labor Output Elasticities figures vary between 0.35 and 0.66 for all periods and coun-
tries, but the most important part of the values surrounds .55, as was shown in Table
1. Over the three time intervals Denmark, UK, Germany exhibit the highest LOE, with
elasticities above 0.6; whilst on the other hand, Korea, Italy and Japan show the lowest
labor elasticities with average values surrounding 0.45.

As was mentioned before, the Biased Technological Change study is based on the re-
laxation of the premise sustaining the neutrality of the technological change (Antonelli and
Quatraro, 2010; Feder, 2014). Following Antonelli and Quatraro (2014) method, an estima-
tion of the effects of technology on output elasticities and factor shares can be estimated.
Table 3 show how heterogeneity plays a role in the different BTC estimations per country.
In addition to that, Graph 1 show the density functions for the BTC indicator considering
every year and country individually. The main gray line show the sample average, the
thick lines address each country data.

It is expected that biased Technological Change trends differ from country to country
and over time. From Graph 1, it can be seen that there is a group of economies that are
located on the positive side of the BTC, others that show a negative trend and a third
group in which the values are close to zero.

After Graph 1, two interesting issues can be pointed. First, there are some cases in
which technology seems to be close to neutral, meaning that the density is concentrated
nearby zero. For these countries the Bias Effect is marginal and the technological change
affecting their production systems can be understood as a traditional shifts on the iso-
quants, so, can be measured mainly by the TFP. The second point apply for the majority
of the cases, meaning those with Bias values concentrated away from zero. Data suggests
that the neutrality assumption isn’t entirely supported on these countries since their bias
densities show dispersion in two ways: their tails are wide escaping from the zero area and
the most frequent values (so, not only the tails but the entire distribution) are situated in
negative or positive values. Last, note that whilst some countries are recurrently on the
positive side of the Bias and others are negative, there is a group that passes from one state
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Graph 1. Kernel Density of BTC, sample average for 1973-2005 and country values.
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to the other. Since the kernel density graph doesn’t contemplate the time dimension, the
next figures will pay attention to the BTC dynamics over time with country-level details.

Graph 2 shows the absolute values of the BTC indicator over time. Since this indicator
is constructed from an specific year-base (1973, as explained in the previous section) all
values depart from zero. Japan, Korea and Finland show a positive bias trend, the rest
passed from a positive state to a negative one and vice-versa. When analyzing the growth
rates instead of the absolute values, the bias dynamic can be appreciated. Graph 3 show
that this trends are far from being static or monotone. Each country show their own path
and individual dynamic regarding the Bias.
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Graph 2. Bias Technological Change by Country. 1973-2005.
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Graph 3. Bias Technological Change Dynamics (growth rates) by Country. 1973-2005.

−
.0

5
0

.0
5

.1
B

ia
s
 T

e
c
h
n
o
lo

g
ic

a
l 
C

h
a
n
g
e

1970 1980 1990 2000 2010
Year

Japan
Korea
Finland
France
UK

Belgium
Australia
Netherlands
Spain
Germany
Denmark
US
Italy

Source: Own Elaboration based on KLEMS, WDI and GGDC databases

BTC movements are heterogeneous from country to country because they refer to a

16



local feature that is embedded on each economy and is manifested when they react to
technological changes. The localized characteristics of production factors (e.g. labor spe-
cialization) and their relative abundance on a region are the core of the trends observed in
graphs 2 and 3. In the next sections, the focus will be put on the determinants of these
localized adaptive processes.

Last, regarding the relation and trends between traditional productivity measures and
the bias, it is important to underline that TFP and BTC are two complementary indicators
that are oriented to inquire on technological change dynamics, but the explanatory power
of each differ in substantial aspects. TFP is oriented to measure the shifts on the isoquants,
while BTC is focused on estimate the changes on their slope. The different behavior of
the two estimations is showed in Graph 4, in which the interaction of the two variables is
presented at the country level (TFP in the horizontal axes and BTC in the vertical ones).

Graph 4. TFP and Biased Technological Change by country. 1973-2005.
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Graph 4 shows the interaction of TFP and BTC. A number of patterns can be dis-
tinguished: positive correlations, as is the case of Korea, Finland and, with attenuated
intensity, France; negative correlations, affecting Italy, UK and, with minor intensity, Ger-
many, US and Australia; and neutral relations, meaning that the movements on TFP
intensity take place without affecting the Bias trends, mainly represented by Belgium,
Denmark and Netherlands. One last case is that of Japan, in which the TFP levels remain
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relatively fixed, but the BTC showed upwards movements.

This graph is oriented to show that there is few evidence supporting the fact that TFP
and BTC trends are similar. The mechanisms that trigger each indicator respond to dif-
ferent determinants, because the processes they are measuring are, by nature, different.
The movements of the TFP are those affecting the entire economy by modifying available
techniques and production practices. On the other hand, the BTC respond to adaptive
processes that take place on each specific context.

5 Exploring the determinants of the BTC

This section will present the core of the discussion of this paper, which is oriented to ex-
plore the determinants of the biased technological change. Since the intention is to measure
technical adaptations that take place at the local level after generic technological shifts, at
least two elements deserve to be further explored. First, the magnitude of the adaptation
effect, meaning how important the bias is; second, the direction that the bias has (i.e. it’s
sign), or the coherence of the adaptation (according to Antonelli and Quatraro, 2014).

The Biased Technological Change determinants were addressed in a number of pre-
vious works (e.g., Antonelli and Quatraro 2007, 2010, 2014; Kataishi, 2015) achieving a
set of common results that worth to be recalled. The first of them is that BTC is a
path-dependent variable, related with former decisions regarding resource allocations and
specialization patterns. Besides the direct approach consisting in take previous states of
the BTC and measure the influence on the current values, the path dependence can also
be addressed by comparing the bias with other productivity indicators such as other sec-
tor’s or technological classes (as in the sector-level analysis conducted in Kataishi, 2015)
or a by implementing a ratio between lagged BTC and TFP realizations (as in Antonelli
and Quatraro 2014). In any case, the relation of the BTC with the previous states of the
economic system raises as an important factor to be taken into account at the moment of
explore the BTC behavior.

The output elasticities (OE) have a key role too, specially because they affect the al-
location choice by giving a particular return given the characteristics of the technological
shock. As was mentioned before, resources can (or cannot) evolve in the same direction
than output elasticities. If those evolve together in the direction of an abundant factor
then we refer to a positive (negative) bias. From a conceptual point, OE are able to signal
whether the relative use of one factor or other is convenient15 at a given moment, restricting

15In the sense that higher output elasticities may imply higher returns from a factor, hence, more demand
on its use.
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the future allocations and abundance of labor, capital or other production factors. This,
of course, is critical on the BTC dynamics.

From a purely theoretical point of view, factor prices affect are strongly related to the
elasticities. Particularly, elasticities are calculated assuming CRS production functions and
that the Euler’s theorem holds16. Due to this indirect relation, prices (i.e. wages) may
present a different type of influence on the allocation decisions than elasticities, although
they are assumed to be strictly related17. The effect that price movements have on the
BTC will also be considered as relevant in the analysis and explored as both, a determinant
and a control variable.

The knowledge dimension is also expected to have an important effect over the Bias,
since knowledge nature imply that is embedded in local systems. As is widely underlined
on the innovation literature, a key distinction concerning different types of knowledge is
worth to mention. On the one hand, radical innovations usually come from a sequence
of efforts that are whether originated from science and technology research and applied
sciences investments, or from big enterprises that conduce R&D practices. This radical
innovations, once widely diffused, may be able to become general purpose technologies.
On the other hand, incremental innovations take place at the local level, in which firms
adapt and appropriate radical or general purpose innovations to satisfy specific market
niche needs. These kind of efforts are related to day-by-day routines that are improved
upon the cumulated experience and circulation of knowledge with pairs of a firm’s context.

The relation between these two dimensions of knowledge will be addressed in the next
section. The BTC, as was mentioned, refers in an aggregated fashion to adaptive processes
that take place in particular contexts. On their side, there are different types of variables
that may indicate generalized shifts on technology, one of the most frequently used are
patents.

There is a rich discussion regarding the role that patents play as an indicator of new
knowledge generation (e.g. Trajtemberg, 1987; Pavitt, 1985; Katila, 2000). This indica-
tor is, still, a widely used approximation that allow to explore macro-level tendencies at

16Meaning that the elasticities are calculated as βi,s,t = PLL
Y

=
wi,s,t.Li,s,t

Yi,s,t
. A complementary way to

interpret the a two-factors’ CRS approach is that the variations are concentrated in one of the factors (say
L). The effect of the remaining elements are contemplated in a raw approach, concentrating in K and α
different types of information. The detailed analysis that additional factors may offer is, however, a line
of work that apply to the domain of the multi-factor productivity analysis (MFP). Although the last is
compatible with the presented framework, it suppose future efforts of development towards an integration
of a comprehensive, detailed view and it’s formal implementation.

17In the econometric exercises, although, this will be represented sorting a number of restrictions in the
specification structure that will be noted in the next section.
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regional and national level (Acs et al., 2002) and serves as a raw indicator of generalized
technologies spreading (Bresnahan and Trajtenberg, 1995) and worldwide relevant innova-
tion activities (Hall et al., 1986).

Technologies that are spread trough codified knowledge -as patents- impact in firms’
routines in different ways. Each firm make use of patents according to their objectives,
adapting new knowledge to their own routines, giving place to adaptive processes. From
a macro perspective, this process can be captured in different ways: on the one hand,
patents can lead to an intuition of general technology shocks (that move the isoquants
towards cheaper combinations of resources), on the other hand, the BTC indicator can
enlight the local reaction to these transformation in the existent production techniques.

Regarding previous insights on this matter, the Bias relation with patents is either
strongly negative (Antonelli and Quatraro, 2014) or inconclusively negative (Kataishi,
2015). This is due to the fact that the patent creation affect the diffused techniques and
the bias the reaction of the local systems to that new knowledge. In this sense, adaptation
processes are not expected to begin or finish every time a new patent is registered or used
in an economy. On the contrary, the dynamics of the adaptive processes are a continuum
of efforts and routines that doesn’t depend, a priori, on the patent creation. So, patents
allow the shifts on the isoquants, while the Bias is the adaptive and local response to this
process. The dependence of one on the other is, according to previous studies, inconclusive.

Last, knowledge creation, particularly the patenting dynamic, can be associated with
a country’s resources or, more generally, with its wealth. R&D expenditures will depend
on this, in addition to the externalities that may generate a critical number of agents and
institutions carrying related activities. This feature present a linkage with the income
per-capita figures presented in the last section. On the one hand, the more resources an
economy enables toward these activities, the more the probability they have to success
in producing new knowledge; on the other hand, the persistence on knowledge creation
(of course, resource related in the mid-long term) generates capabilities that determines a
technological profile. So, addressing the fact that technology shifts through patents can
be related to the economic wealth, the income per capita indicator will be explored as
a determinant of the BTC, as a control variable of the shift effects derived from general
technologies incursions. As so, the source mechanisms in touch with general technology
creation processes are expected to be in-natura different from those related with the BTC.

Regarding other determinants of the BTC, some of them won’t be considered in this
work due to lack of data. The most relevant issue in this sense is related to the R&D efforts.
The measurement of variable at the macro level typically take place after the nineties for
the majority of the countries, less than the half of the time-window used in this work.
This indicator won’t be considered in the panel data due to inexistent data for most of
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the countries, although some of it’s variability might be taken into account through the
patenting data and it’s expected to don’t have a relevant impact on the main results.

6 Results

Making use of a set of econometric models, the first issue addressed in this section are
the determinants of the Bias Technological Change. Taking into account the previous dis-
cussion on this matter and presenting novel elements on the estimation, the first group of
models will delve into the bias direction determinants. Additionally, since the BTC can be
described as a three states indicator (zero, positive, negative), if values are different from
zero then the absolute distance from the null value can be used as an estimation of the
amount of bias. Hence, the second set of models will inquire into the connection between
the bias intensity and the neutral technology shifts.

In previous sections it was suggested that the BTC is linked with a number of determi-
nants. The following model incorporates the main relations discussed above, intentionally
omitting a number of issues related with the econometric specification, specially those con-
nected with simultaneity and reverse causality faults. The reason to do this is to present
the basic structure of the model, which will be re-discussed in the next paragraphs. The
raw model can be expressed in the following form:

Abiast = β1 loe(i,t) + β2 y/l(i,t) + [βx X(i,t)] + ηi + τt + εi,t (3)

Where i, t are subscripts referring to countries i and years t, with i={ 1,13}, t={1973,2005} and:
loe(i,t): stands for Labor Output Elasticities

y/l: income per-capita
X: set of control variables
ηi: country fixed effect
τt: time fixed effect

This initial specification is a fixed effects dynamic panel data model, which is able to
exploit the strongly balanced structure that the sample has. In fact, ηi and τt account
for the country and time fixed effects, the latter particularly relevant for long periods of
analysis18. This raw specification is concentrated on the exploration of two effects: the fac-
tor output elasticities and the income per-capita as determinants of the BTC. It is worth
to recall that the pure BTC indicator takes negatives and positive values, and that the
passing from one sign to the other attend to the coherence of the adaptation process (as
in Antonelli and Quatraro, 2014). In order to gain robustness of the results, this work
will propose a set of models instead of one, making the raw specification the initial staring

18Accounting for exogenous shocks that affect all the countries in the sample, such as an international
crisis or other global phenomena.
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point. The reasons to do this are based on the robustness of the results and the intention
is to explore weather the relations are consistent within a variety of formulations. In this
sense, the vector Xi,t contain a group of indicators that will be selectively included on the
specification to explore significant variations on the outcome.

The model as formulated above doesn’t consider the fact that some variables have en-
dogeneity issues, not only at the conceptual level, but also by construction. To make the
point short, the former model presents the problem of serial correlation since the error
terms are linked from one period to the other. This happens specially in cases in which the
construction of a variable depends on other terms on the regression (so, there is a violation
of the exogeneity assumption that a FE model requires). For instance, the presence of
labor elasticity as an independent variable imply a priori an incompatibility with the BTC
on the other side of the equation, because the first is used to construct the last19. If this
issue is not taken into account, the relations obtained through the model will not only be
spurious, but also the resulting estimations of βx will be biased.

There are two main approaches to deal with the mentioned problem. The first is to use
traditional instrumental variables, incorporating additional information on the regression
that allows to capture the variability of the endogenous factor, avoiding the direct correla-
tion with the independent variable20. This approach had faced some criticism within the
literature due to the necessity of defend the introduced variables at a conceptual level (in
addition to the technical dimension) and the risk to incur in spurious correlations. Addi-
tionally, it requires to find the particular variables that fit the sample characteristics (32
years and 13 countries) and that accomplish the IV specifications (exogeneity, no correla-
tion with errors, correlation with the instrumented variable, etc.). The second alternative,
which is the one applied in this work, is to instrument endogenous variables with a set of
lags of their own, as a strategy to avoid potential spurious correlations and reverse causality
problems.

Taking advantage on the availability of the past realizations of the regressors, it is
assumed that the t-1 moments are uncorrelated with contemporaneous idiosyncratic shocks
on the independent variable. It is also expected that past values of each variable are highly
correlated with their contemporary realizations and for time constrain reasons uncorrelated
with both, dependent and independent variables contemporary realizations, allowing them
to qualify as proper instruments on this model.

19And the regression will show an obvious significance because of that construction. This significance,
of course, will not be the reflection of an empirical relation, but the consequence of how the variables are
constructed.

20Of course, these are not the complete conditions to implement an instrumental variable in a dynamic
model. See Wooldridge (2010) for further details.
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Abiast = β1 loe(i,t−λ1) + β2 y/l(i,t−λ2) + β3 w(i,t−λ3)+

+β3 T.E.P(i,t−λ4) + β4 ∆T.E.P.(i,t−λ6) + β5 Pat(i,t−λ5) + ηi + τt + εi,t
(4)

Where i, t are subscripts referring to countries i and years t, with i={ 1,13}, t={1973,2005} and:

loe(i,t): stands for Labor Output Elasticities y/l: income per-capita

[X]: wi,t, T.E.Pi,t, Pati,t, growthi
wi,t: local wages
T.E.Pi,t: is the proportion of population with tertiary education
∆T.E.P.i,t: patents creation per year
Pati,t: patents creation per-capita
ηi: country fixed effect
τt: time fixed effect
λx: lag of the variable in years. λ5 = 1 represents a lag of one year on the fifth term of the regression. It is expressed as λx because
each term (variable) have their specific time-lag.

In order to avoid endogeneity issues, a set of time variations were incorporated to the
model such that the orthogonality condition E(εit|Xit−λx) = 0 is achieved for the set of
regressors Xit, by using Xi(t−λx) = (xi1, ..., xit−λx) with λx≥0, where λx represent time
lags. Each variable presents it’s own lagging considering the relation it has with the inde-
pendent variable and with the other regressors. Accordingly, the re-arranged formulation
of the model have the form of Equation (4). In such formulation, endogeneity issues
are addressed by instrumenting compromised regressors with past realizations of that vari-
ables. Each of these variables are lagged in an specific number of years, represented by λx

21.

Table 4 shows the results of the regressions carried using the framework presented
above, exploring the determinants of the Bias direction (or sign). The table summarize
five models that alter the time lags λx and selectively include (and exclude) variables to
see whether the specification’s conclusions are affected or not.

21The second column of Table 4 represents the number of years of lag implemented in each model.
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Table 4: Dynamic Fixed Effect Models on the Bias Direction determinants.

Variable λ (lag) FE(1) FE(2) FE(3) FE(4) FE(5)

LOE 1 .30767288** .26117984* .26275519* .27578383* .2791132**

Y/L - -3.711e-07* -8.496e-07* -1.023e-06** -1.410e-06* -7.791e-07*

1 0,0001917 0,0006767 0,0003239

w 2 -.00041677 -.00199682 -.00185753 .00038965

3 .00070776 .00272191* .00257459* .00064624

T.E.P. 1 -0,00000526 -0,000006155

∆ T.E.P. 2 -0,000005232 -0,000005229 -5.590e-09*

Patents p.c. 1 .00670819 .00649841 .00285513

2 .00332065 .00352136 .00340625

cons -.15602108** -.11463721 -.11568707 -.12669465 -.14814135**

Source: Own elaboration. The λ column specify the lags, such that 1 is a one year lag. The significance levels
respond to the traditional boundaries: 10%(*); 5%(**) and 1%(***).

The conclusions derived from this set of models indicate that the Bias direction is
positively related to the labor output elasticity and negatively related to the income per-
capita22. This stresses the importance of the specialization patterns at the local level,
showing that the higher the output elasticities on labor are, the higher will be the capabil-
ities of a system to adapt to technological shocks (i.e. neutral shifts in the isoquants). On
the other hand, countries’ wealth works in the opposite direction: the higher the income
per capita, the less is expected to be the bias. This relation points that the coherence
of the adaptation processes increase as the income per-capita is lower. However, several
considerations regarding the sample characteristics can be acknowledged: these countries
are the richest in the world and the differences on their income levels doesn’t necessarily
imply a lack of resources, but depict a production profile oriented or not towards the bias.
In other words, the higher the income per-capita (within the richest economies), the higher
the probability of a country to be specialized in neutral shifts of the technology, and not in
adaptive dynamics. So, a negative association may suggest that some adaptive capabilities
are not commonly present in countries with higher y

l , fact that can be explained through
their specialization patterns, which are not focused on adaptation, but in creation of tech-
nological processes. This issue will be specially addressed in the next set of models.

Table 4 also shows that wages are positively related with the BTC in two of the specifi-
cations (at 10% of significance). This relation can be explained through the bond between
allocations and output elasticities: from a traditional reasoning perspective, the higher the
wages, the higher the labor productivity levels are expected. Furthermore, the use of wages
serves as an element to validate the LOE related results, because they control for variations

22Despite the absence of 1% significance results, the different formulations of the model allow to confirm
that the relations found are well grounded.
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on the BTC that are explicitly related to price mechanisms. For the case of patents, as
was mentioned in the previous sub-section, the non-significance is expected since the bias
direction isn’t conceptually related to the isoquant shifts, but it’s inclusion works both as
a confirmation of this intuition and as a control of potential influences of the shift on the
BTC. Last, the remaining variables are connected to the education level of a country. The
indicators included are the amount of people with tertiary education (plus it’s growth over
time) and are oriented to control for qualitative factors in the labor force23. The relations
of these indicators with the BTC are not significant, except for the one on the model 5, in
which there is weak negative association with the BTC. This is in-line with the proposed
framework, primarily due to the positive linkages that education have with income per
capita levels.

To go deeper on the relation between the BTC and the neutral shifts, a second set of
models is developed as an alternative approach (Equation 5). This set of models inquire
about the bias amount, not its direction. The bias amount carry interesting information
on the technological trends of the economies. As was mentioned in the theoretical discus-
sion, a zero value of BTC tend to validate the neutrality of technology assumption. The
idea behind the next exercise aims to explore whether these two mechanisms, the bias and
the neutral shifts, compete with each other. If that’s so, then one can think of economies
that have more bias as not specialized in technological shifts activities. In other words,
this relation explores in a novel way -using BTC- the relation between economies that are,
in innovation terms, first movers and followers (the latter, referring to those which adapt
what was created in other systems).

In pursuance of the isolation of the BTC intensity, the indicator used as indepen-
dent variable consist in a module transformation of the bias, such that the negative effect
is translated as an absolute variation24 allowing to interpret the distances this indicator
present with respect to the null value. The closer the BTC is to zero, the marginal the
effect of it, hence the higher the neutrality of the technological change.

In this case the model is based on dynamic panel data analysis through the General

23Of course the use of this variable imply a first specialization level on a professional career (since
tertiary is an intermediate step trough a highly skilled formation). There are other indicators that are
more restrictive such as number of engineers, PhD graduates, etc. but they are not available for the period
analyzed. Yet, the proportion of people with tertiary education serves well to distinguish unqualified workers
from the rest, and it is a solid indicator available along the 32 years under analysis for all the countries of
the sample.

24An alternative indicator is the use of squares. Although some regressions were carried to confirm the
tendencies with this alternative, the variability of the Bias is severely affected, not only with respect to it’s
own movements but also when incorporating the proxy of percentage variations (logs) in the regression. In
sum, while this exercise was carried and partially confirm the results (in general with weaker significance),
it was discarded due to the lack of sensibility on the bias movements, better captured by the module.
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Method of Moments (GMM) estimator (Arellano and Bond, 1991), specifically a two steps
System-GMM (Arellano and Bover, 1995; Hall, 2005). This estimator have several advan-
tages when is used with autoregressive models of moving average, such as the managing of
errors’ heteroskedasticity in order to obtain (the most) efficient estimations. The follow-
ing set of models have an explicit autoregressive term which, used within a fixed effects
framework, may lead to biased estimations if the errors are heteroskedastic. Besides the
ability to handle with this issue, the GMM estimator is the most efficient strategy because
it uses different sample moments to construct the estimator. The mechanisms behind the
construction of the model are the same, taking advantage of the the panel structure and in-
strumenting variables with lagged terms so to avoid simultaneity and endogeneity problems.

This model, in difference with the previous one, is particularly focused on the relation of
patents with Bias Technological Change. Additionally, it explores the relation with income
per-capita and the output elasticities. In order to incorporate elements related to the
production profiles, two additional variables were included in the analysis: the proportion
of low-tech and high-tech25 output. These indicators may offer a lead to support the idea
that the the BTC amount is associated with the technological production profiles. The
general specification of the GMM models is as follows:

Dbias
t = β1 log(Dbias)(i,t−λ1) + β4 log(y/l)(i,t−λ4) + β5 log(Pat)(i,t−λ5)+

β2 log(Ylow)(i,t−λ2) + β3 loe(i,t−λ3) + β6 log(Yhigh)(i,t−λ6)+

ηi + τt + εi,t

(5)

Where i, t are subscripts referring to countries i and years t, with i={ 1,13}, t={1973,2005} and:

log(Dbias): is the logarithm of the absolute distance of the bias technological change from zero. Dbias is the module of the BTC

indicator such that26:

D
bias

=

{
Abias if Abias ≥ 0,

−Abias if Abias < 0.

log(Ylow): share of the GDP from Low-Tech sectors (log).
log(Yhigh): share of the GDP from High-Tech sectors (log).
log(y/l): income per-capita (log)
loe(i,t): stands for Labor Output Elasticities

log(Pat)i,t: patents creation per year (log).
ηi: country fixed effect; τt: time fixed effect
λx: lag of the variable in years. λ5 = 1 represents a lag of one year on the fifth term of the regression. It is expressed as λx

because each term (variable) have their specific time-lag.

Table 5 shows the results of the GMM estimations. At the general level the main
results show: first, the strong relevance of the past bias intensity, which stress the path-
dependent nature of the BTC; second, the confirmation of an inverse relation of BTC

25These indicators are built on the OECD categorization of sectors (OECD, 2011), which were classified
using detailed information on the Bias construction as in Kataishi (2015). The inclusion of the intermediate
categories -Medium High and Medium Low- were not significant and didn’t affected the main conclusions
of the models.

26Whilst for completeness the first condition specifies that the bias should be equal to zero, there is no
empirical value matching such condition at 3 digits detail.
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intensity with patenting activities, pointing that there are divergent specialization trends
of different technological profiles; third, that these results are in-line with the previous
inquiries regarding the BTC relation with the income per-capita.

Table 5: System-GMM Models on the Bias Intensity determinants.

Variable λ (lag) GMM (1) GMM (2) GMM (3) GMM (4) GMM (5)

log Dbias 1 .00629227*** .0060798*** .00628534*** .00590552*** -

y/l 2 -.00042781* -.00043665* -.00042486* -.00030957* -.00005351*

log Patpc 2 -.00231179* -.0093711** -.0024264* -.01299878** -.0104853**

log ylow 1 .00501775*** .00486555*** - - -.00165375

2 - - .00509764*** .00280107 -

loe 2 ns - ns - -

Xti controls1 yes yes yes yes yes

ηi yes yes yes yes yes

τt yes yes yes yes yes

cons .01702313 .01684888 .01764575 .01818465 -.02102795

Source: Own elaboration. The λ column specify the lags, such that 1 is a one year lag. The significance levels respond to the traditional
boundaries: 10%(*); 5%(**) and 1%(***). Note 1: X

ti
controls include y

high
i, t, λ = 1, 2 and Pati,t,λ=1 in which the results show

no significance (at 10%). See the Annexes for the full specification of each model. Reference of ns: non-significant. The hyphen means
that the variable (or lag) isn’t included in the model.

The strong path-dependent nature of the Bias is consistent with the literature, although
in this case the relation isn’t measured with the common BTC indicator, but with the BTC
intensity. The localized efforts are non-reversible and strongly associated with past spe-
cialization patterns (Antonelli, 2008; Antonelli, 2006; Robert et. al. 2008), regardless the
coherence of the adaptation embodied in the sign of the bias. In all the models in which
this variable was included (1-4)27 the significance was strongly positive, supporting the
idea that the bias intensity is associated with previous BTC levels. So, the higher the time
an economy specializes on adaptive techniques, the higher the probability to remain in the
same situation over time.

Second, the ties with patenting activities are, as expected, inverse to the Bias Techno-
logical Change intensity: the higher the BTC distance from zero, the lower the expectations
on the patents creation amounts. This is coherent with the theoretical framework discussed
above and points that if an economy is specialized in adaptive techniques it is not expected

27The reason of the omission in the model 5 was to check if the other conclusions were sustained without
the path-dependent term, specially considering the significance this factor has. In this sense, Model 5
confirms direction and intensity of the relation with patents and income per-capita, even if the past reference
to the bias is omitted.
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to be a technological creator. These results are confirmed in all the models, including
model 5 in which the autoregressive term on the bias was intentionally omitted to test the
robustness of the other results (given the high significance of the path dependent effect).

Additionally, the income per-capita results are in-line with the first set of regressions
(Table 4), confirming the inverse trends with respect to both, BTC direction and intensity.
Particularly the results related to BTC intensity (Table 5) show a systematic negative
relation of the income with the bias amount, pointing out not only that the richer the
country the less is expected to find any type of adaptive behavior, but adding evidence
on the patent’s related results: if high wealth contexts increase the probability of create
knowledge through patents, then the less the resources, the higher the chances to adapt
locally knowledge instead of make neutral shifts on production techniques.

Another aspect that supports the direction of the results is related to the technological
profile of the economies. The variable Y

low
capture the share of the GDP belonging to low-

tech sectors28 offering information about the importance of this type of production within
each economy. Figures on this matter show a positive and highly significant relation in
three of the five models, suggesting that when the complexity of the production system
is oriented to low-tech, the probability of having an adaptive behavior is higher. In other
words, if an economy have an important low-tech participation, then it isn’t expected to be
a technological shifter, but a country that adapts itself to technological changes developed
somewhere else.

To summarize, the results presented in this section bring evidence on different aspects
of the Bias Technological Change. Ordered in two different set of models, the first exer-
cise, based on fixed effects models, confirm previously stated results on the BTC direction
determinants appending two critical elements: the importance of the income-per capita of
an economy and the key role of the labor output elasticities as indicator of adaptive skills
within a production system. The second set of models consist in System-GMM regressions
and are oriented to exhibit novel evidence on the Bias intensity (instead of the direction).
The corollary of these support the idea that adaptive and localized specialization are asso-
ciated to economies that present low income per-capita, low-tech sectors specialization and
poor performance on patenting behavior. Since the Bias Technological Change is able to
measure the local reaction of an economy to external technological changes, the production
systems that show strong bias are not expected to be oriented to produce new knowledge,
but to use it and to adapt it to their own demand needs.

28All prices were calculated using sector level PPP of 2005. The sectoral distinction was made at two
digits and the group was arranged according to the OECD categorization.
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7 Conclusions

This work shows the importance of the Biased Technological Change both at the theoreti-
cal and empirical levels. The theoretical contributions relate the concepts of technological
change and it’s local aspect with the bias making use of the changing nature of the factor
output elasticities as source of economic diversity. From an empirical point of view, the
results are based on an original database consisting of a strongly balanced panel-data in-
cluding 13 developed countries and 32 years of time-lapse. From them, evidence on the bias
trends, direction and intensity was discussed, with particular attention on the determinants
of these indicators. The main outcomes signal that economies with higher bias are those
specialized in adaptive behavior, which are not expected to be neutral technology creators.
The direction or coherence of the adaptations are related to the skills of the labor force
(using the output elasticities as a proxy of this measure), in addition to the resources that
an economy posses.

From a theoretical point of view, the BTC is a fundamental element on the techno-
logical change discussions that is often left aside. Since the empirical manifestation of the
neutral technological change assumption (made by Solow in 1957) have been proven to be
weak, the inquiry on the impact from it’s relaxation becomes not only a valid research
question, but a clear path to gain comprehention of techonological dynamics. As so, it’s
complementarity with seminal concepts such as directed technological change and local
adaptive behavior place the BTC concept in an element to take into account when dis-
cussing long trends technological change and knowledge generation and adaptation. We are
in the first steps of exploration on the interpretation and complementarity of the bias with
other indicators of technological performance. In this sense, this work offer a continuation
of the technological change analysis, and contributes exploring novel interactions with key
elements not commonly considered until now.

Two dimmensions of the BTC were explored in this work. The first is in concordance
with the traditional analysis of the bias and measures the direction and, hence, coherence
of it; the second offers an indicator to explore the intensity of the bias effect. The in-
teraction of these two elements supose a fertile future research field and together offer a
coherent approach to analyze local adaptations and technological behaviour. The amount
of bias, regardless of it’s direction, is a novel element that contributes in the disctintion of
technological profiles, specially able to isolate economies that are oriented to neutral shifts
on the isoquants, that can be generally understood as radical innovations, from those which
adjust their production ways by modifying the isoquant slopes (adaptive or incremental
innovations).

Regarding the directionality of the BTC, this works finds it’s determinants to be inline
with previous works. Additionally, it explores tow main elements: the income per-capita as
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a raw indicator of the wealth of an economy and labor output elasticities as determinant of
adaptive skills. The bias show a recurrent negative relation with the income per-capita, al-
lowing to infer that economies with less resources are better fitted to adapt theirselfs given
a technological shock (it is plausible that the reason behind this is that these systems have
been recurrently learning from adaptive situations over time, hence they’ve learned how to
better react). On the other hand, the elasticities have a positive influence in the BTC as
they grow, meaning that higher workers’ skills tend to lead the production system into the
right direction (or that the adaptation is coherent in relation to factors’ allocation and
available resources, following Antonelli and Quatraro’s work).

With respect to the BTC intensity, results show three aspects that are worth to remark.
First, the existence of a path dependent nature of the bias amount, pointing that the fur-
ther from the neutral technological change an economy is, the higher is expected to be
the bias effect in the future, regardless the direction of it. Complementarily, the negative
relation of BTC with patents confirm both, patents and bias as indicators of neutral shifts
and output elasticities, respectively. On top of that, if an economy show a tendency to be
specialized in patent creation, then there is a trade-off affecting the bias amount. This is
probably one of the most important conclusions of the paper, relating the two main effects
of technological change based on commonly used indicators.

Future challenges goes in different directions. From an empirical point of view, there is
a need of include developing countries in the analysis in order to see how the bias react. At
the moment of the creation of this work the longest time series able to construct the BTC
indicator reach the early 90’s, making the long trend comparison less robust, as well as the
structure of the econometric models. In this sense, the inclusion of other countries with
different income and specialization patterns is recognized as a critical step forward. On
the theoretical perspective, the generalization of this method in order to be implemented
in a MFP (Multi-factor productivity) framework may imply a major breakthrough in the
use of the bias as a basic indicator of technological change.
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